Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\hept{\begin{cases}|x|\ge0\forall x\\|y|\ge0\forall x\\|z|\ge0\forall x\end{cases}}\)
Mà \(|x|+|y|+|z|=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
\(|x|\ge0\)
\(|y|\ge0\)
\(|z|\ge0\)
mà |x|+|y|+|z|=0
nên x=y=z=0
194xyz chia hết cho 40,30 => z =0
194xy0 chia hết cho 40,30,36. Ta có:
40=23.5 ; 30=2.3.5; 36=22.32
BCNN(40;30;36)=23.32.5=360
Vậy: để 194xy0 chia hết cho cả 40;30;60 thì 194xy0 chia hết cho 360 => có 2 số thoả mãn là: 194040 (x=z: loại); 194400 (y=z: loại); 194760(x=7;y=6 và z=0 nhận)
Vậy: Để 194xyz chia hết cho cả 40;36 và 30 thì x=7; y=6 và z=0
Ta có:\(2xy-6y+x=9\)
\(\Rightarrow2y\left(x-3\right)+\left(x-3\right)=6\)
\(\Rightarrow\left(x-3\right)\left(2y+1\right)=6\)
Tới đây bí:((
Ta có \(2xy-6y+x=9\)
\(\Rightarrow y.\left(2x-6\right)+\left(2x-6\right)=2.9-6\)
\(\Rightarrow\left(2x-6\right).\left(y+1\right)=12\)
\(\Rightarrow\) 2x-6 và y+1\(\inƯ\left(12\right)=\left\{\pm1;\pm3;\pm4;\pm12\right\}\)
Mà 2x-6 là số chẵn nên \(2x-6\in\left\{\pm4;\pm12\right\}\)
Ta có bảng
2x-6 | 4 | -4 | 12 | -12 |
y+1 | 3 | -3 | 1 | -1 |
x | 5 | 1 | 9 | -3 |
y | 2 | -4 | 0 | -2 |
Vậy các cặp (x;y) là : (5;2);(1;-4);(9;0);(-3;-2)
x+1 và x-3 <0 nên trái dấu
suy ra x+1>x-3 nên x+1>0 và x-3<0
suy ra x>-1 và x<3
suy ra -1<x<3
vậy x thuộc tập hợp :-2;-1;0;1;2