Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k,y=3k,z=5k\)
Ta có:
\(xyz=810\\ \Rightarrow2k.3k.5k=810\\ \Rightarrow30k^3=810\\ \Rightarrow k^3=810:30\\ \Rightarrow k^3=27\\ \Rightarrow k=3\)
Vậy:
x = 2k = 2.3 = 6
y = 3k = 3.3 = 9
z = 5k = 5.3 = 15
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
Ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
=> \(\frac{x}{2}.\frac{x}{2}.\frac{x}{2}=\frac{y}{3}.\frac{y}{3}.\frac{y}{3}=\frac{z}{5}.\frac{z}{5}.\frac{z}{5}=\frac{x}{2}.\frac{y}{3}.\frac{z}{5}\)
=> \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{125}=\frac{810}{30}=27\)
=> \(\hept{\begin{cases}x^3=27.8=6^3\\y^3=27.27=9^3\\z^3=27.125=15^3\end{cases}}\)=> \(\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)
Vậy ...
a/
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)
b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)
\(\Rightarrow x=20;y=30;z=42\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có
\(xyz=2k\cdot3k\cdot5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=810:30=27\)
\(\Rightarrow k=3\)
Với \(k=3\)ta có
\(\hept{\begin{cases}x=2\cdot3\\y=3\cdot3\\z=5\cdot3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}}\)
Vậy..................
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Thay \(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)và \(xyz=810\)
Ta có : \(2k.3k.5k=810\)
\(\left(2.3.5\right).\left(k.k.k\right)=810\)
\(30.k^3=810\)
\(k^3=810:30\)
\(k^3=27\)
\(k=3\)
Vì \(k=3\)
Ta có : \(\hept{\begin{cases}x=2.3=6\\y=3.3=9\\z=5.3=15\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)
b, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) =>\(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
=> xyz=2k.3k.5k=810
=> 30k3=810 =>k3=27 =>k=3
=>\(\hept{\begin{cases}x=2.3=6\\y=3.3=9\\z=5.3=15\end{cases}}\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
Bài 1: Tìm x,y,z
a) Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
\(\Leftrightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
mà 2x+3y-z=50
nên áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)
Do đó:
\(\left\{{}\begin{matrix}2x-2=5\cdot4\\3y-6=5\cdot9\\z-3=5\cdot4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=20+2=22\\3y=45+6=51\\z=20+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)
Vậy: (x,y,z)=(11;17;23)
b) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Ta có: xyz=810
\(\Leftrightarrow2k\cdot3k\cdot5k=810\)
\(\Leftrightarrow30\cdot k^3=810\)
\(\Leftrightarrow k^3=27\)
hay k=3
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=3\cdot3=9\\z=5\cdot3=15\end{matrix}\right.\)
Vậy: (x,y,z)=(6;9;15)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)(1)
đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)(2)
thay (2) vào (1), ta được:
\(xyz=2k\cdot3k\cdot5k=810\)
\(\Leftrightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)
từ đó
\(\Rightarrow\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot5=15\end{cases}}\)
vậy x=6; y=9; z=15
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\hept{\begin{cases}x=\frac{2y}{3}\\z=\frac{5y}{3}\end{cases}}\)thế vào \(xyz=810\)ta đc: \(\frac{2y.5y.y}{3.3}=810\Leftrightarrow y^3=729\Leftrightarrow y=9\Rightarrow x=6;z=15\)