\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và 2x+3y+z=34

giúp m n...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2x}{2.2}=\frac{3.y}{3.3}=\frac{z}{4}\Leftrightarrow\frac{\left(2x+3y+z\right)}{4+9+4}=\frac{34}{17}=2\) Tính chất tỷ lệ thức

\(\frac{x}{2}=2\Rightarrow x=2.2=4\)

\(\frac{y}{3}=2\Rightarrow y=3.2=6\)

\(\frac{z}{4}=2\Rightarrow z=4.2=8\)

15 tháng 12 2016
Theo tính chất dãy tỉ số bằng nhau ta có: x/2=y/3=z/4=2x/4=3y/9=z/4=2x+3y+x/4+9+4=34/17=2 =>x/2=2*2=4 y/3=2*3=6 z/4=2*4=8
3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

17 tháng 10 2016

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và 2x + 3y + z = 34

=> \(\frac{2x}{4}=\frac{3y}{9}=\frac{z}{4}\)và 2x + 3y + z = 34

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{2x}{4}=\frac{3y}{9}=\frac{z}{4}=\frac{2x+3y+z}{4+9+4}=\frac{34}{17}=2\)

=> 2x = 8 => x = 4

     3y = 18 => y = 6

      z  = 8

Vậy x = 4 ; y  = 6 ; z = 8

17 tháng 10 2016

áp dụng tính chất dãy tỉ số bằng nhau 

=> x/2=y/3=z/4 =(2x+3y+z)/(4+9+4)=34/17=2

=>x=4

y=6

z=8

31 tháng 8 2021

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

31 tháng 8 2021

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

6 tháng 7 2018

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

16 tháng 7 2018

a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8

Ta được: x= 10.28/8=35

y= 6.28/8=21

z=24.28/8=84

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

25 tháng 8 2019

Bài 26:

e) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}.\)

\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}.\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}.\)

=> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)\(2x-3y+z=6.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{9}=3=>x=3.9=27\\\frac{y}{12}=3=>y=3.12=36\\\frac{z}{20}=3=>z=3.20=60\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(27;36;60\right).\)

i) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x.y.z=810.\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

\(x.y.z=810\)

=> \(2k.3k.5k=810\)

=> \(30k^3=810\)

=> \(k^3=810:30\)

=> \(k^3=27\)

=> \(k=3.\)

Với \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.5=15\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(6;9;15\right).\)

Mình chỉ làm 2 câu thôi nhé.

Chúc bạn học tốt!

26 tháng 8 2019

e) Ta có:

\(\frac{x}{3}=\frac{y}{4}\)\(\frac{x}{9}=\frac{y}{12}\) (1)

\(\frac{y}{3}=\frac{z}{5}\)\(\frac{y}{12}=\frac{z}{20}\) (2)

Từ (1) và (2) ⇒ \(\frac{x}{9}=\frac{y}{12}=\frac{x}{20}\)\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

\(=\frac{2x-3y+z}{18-36+20}\)

\(=\frac{6}{2}=3\)

1 tháng 8 2017

a) Áp dụng tính chất ..., ta có :

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)

\(\Rightarrow x=4;y=6;z=8\)

b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )

4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)

Áp dụng tính chất ..., ta có :

\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)

\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)

còn lại tương tự