Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=k\)
\(\hept{\begin{cases}x-4=2k\\y-6=3k\\z-8=4k\end{cases}\Leftrightarrow\hept{\begin{cases}x=2k+4\\y=3k+6\\z=4k+8\end{cases}}}\)
\(\Rightarrow3x+2y-3z=36\Leftrightarrow3\left(2k+4\right)+2\left(3k+6\right)-3\left(4k+8\right)=36\)
\(\Leftrightarrow6k+4+6k+6-12k+8=36\)
\(\Leftrightarrow6k+4+6k+6-6k.2+8=36\)
\(\Leftrightarrow6\left[k\left(4+6-8\right)\right].2=36\)
\(\Leftrightarrow6k.2.2=36\Leftrightarrow6k.2^2=36\)
\(\Leftrightarrow6k=9\)
\(\Rightarrow k=\frac{3}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.2+4\\y=\frac{3}{2}.3+6\\z=\frac{3}{2}.4+8\end{cases}\Leftrightarrow\hept{\begin{cases}x=3+4\\y=\frac{9}{2}+6\\z=6+8\end{cases}\Leftrightarrow}\hept{\begin{cases}x=7\\y=\frac{21}{2}\\z=14\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=7\\y=\frac{21}{2}\\z=14\end{cases}}\)
Nhớ k nha ,dù mk trả lời hơi muộn
\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64};x^2+2y^2+3z^2\)\(=-650\)
<=>\(\frac{x^3}{2^3}=\frac{y^3}{3^3}=\frac{z^3}{4^3}\)
<=>\(\frac{x^2}{2^2}=\frac{2y^2}{2.3^2}=\frac{3z^2}{3.4^2}\)
=>\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}=\frac{x^2+2y^2-3z^2}{4+18-48}=\frac{-650}{-26}=25\)
=>\(\hept{\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{4}=25\end{cases}}\)=>\(\hept{\begin{cases}x=50\\y=75\\z=100\end{cases}}\)
vậy\(\hept{\begin{cases}x=50\\y=75\\z=100\end{cases}}\)
\(\frac{x-2013}{2}=\frac{y-2014}{6}=\frac{z-2015}{8}\)
\(\Rightarrow\frac{x-2013}{2}=\frac{2y-4028}{12}=\frac{3z-6045}{24}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x-2013}{2}=\frac{2y-4028}{12}=\frac{3z-6045}{24}=\frac{\left(x-2013\right)+\left(2y-4028\right)-\left(3z-6045\right)}{2+12-24}=\frac{5}{-10}=\frac{-1}{2}\)
Từ đó suy ra :
\(\frac{x-2013}{2}=\frac{-1}{2}\Rightarrow x-2013=-1\Rightarrow x=2012\)
\(\frac{2y-4028}{12}=\frac{-1}{2}\Rightarrow2y-4028=-6\Rightarrow2y=4022\Rightarrow y=2011\)
\(\frac{3z-6045}{24}=\frac{-1}{2}\Rightarrow3z-6045=-12\Rightarrow3z=6033\Rightarrow z=2011\)