K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

ta có: \(ax=by=cz\Rightarrow x:\frac{1}{a}=y:\frac{1}{b}=z:\frac{1}{c}=\frac{x}{\frac{1}{a}}=\frac{y}{\frac{1}{b}}=\frac{z}{\frac{1}{c}}=k.\)

\(\Rightarrow\hept{\begin{cases}x=\frac{k}{a}\\y=\frac{k}{b}\\z=\frac{k}{c}\end{cases}}\)

mà xyz = 8/abc \(\Rightarrow\frac{k}{a}\cdot\frac{k}{b}\cdot\frac{k}{c}=\frac{k^3}{abc}=\frac{8}{abc}\Rightarrow k^3=8=2^3\Rightarrow k=2\)

=> x = 2/a; y = 2/b; z = 2/c

9 tháng 8 2016

Từ giả thuyết của đề \(\Rightarrow\frac{x}{\frac{1}{a}}=\frac{y}{\frac{1}{b}}=\frac{z}{\frac{1}{c}}=k\)

\(\Rightarrow x=\frac{k}{a};y=\frac{k}{b};z=\frac{k}{c}\)

Mà xyz = \(\frac{8}{abc}=\Rightarrow\frac{k^3}{abc}=\frac{8}{abc}=k^3=8\Rightarrow k=2\)

Vậy \(x=\frac{2}{a};y=\frac{2}{b};z=\frac{2}{c}\)

CHÚC BẠN HỌC TỐT!

17 tháng 4 2019

ta co ax=by=cz 

suy ra x/(1/a)=y/(1/b)=z/(1/c)=k

suy ra x=k/a ; y=k/b ; z=k/c

ma xyz=8/abc suy ra k/a*k/b*k/c=k^3=8

suy ra k=2

suy ra x=2/a;y=2/b;z=2/c

23 tháng 10 2017

Theo đề ta có: xyz= 8.abc= xyz.abc= ax. by. cz= 8

                                                       hay ax.ax.ax= 8

=> (ax)3= 23

=> ax= 2

Với ax= 2=> x= \(\frac{2}{a}\)

      by= 2=> y= \(\frac{2}{b}\)

      cz= 2=> z=\(\frac{2}{c}\)

Vậy x, y, z= \(\frac{2}{a},\frac{2}{b},\frac{2}{c}.\)

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

Ta có: \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{ak\cdot bk\cdot ck\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\cdot\left(ak+bk\right)\cdot\left(bk+ck\right)\cdot\left(ck+ak\right)}\)

\(=\frac{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

Vậy: H=1

20 tháng 8 2020

đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

theo giả thiết ta có \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

thay \(H=\frac{ak.bk.ck\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(ak+bk\right)\left(bk+ck\right)\left(ck+ak\right)}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left[k\left(a+b\right)\right]\left[k\left(b+c\right)\right]\left[k\left(c+a\right)\right]}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc.k\left(a+b\right).k\left(b+c\right).k\left(c+a\right)}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

Vậy H = 1