Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào B ta có:
\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)
TH2: a+b+c=0
=> c=-a-b
=>a=-b-c
=>b=-a-c
thay a,b,c vào B ta có:
\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)
p/s: th2 ko chắc nhá
\(x:y:z=3:5;\left(-2\right)\text{ hay }\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
\(\text{áp dụng tính chất của dãy tỉ số bằng nhau ta có:}\)
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{5.3-5+3.\left(-2\right)}=\frac{-16}{4}=-4\)
\(\text{Suy ra : }\frac{x}{3}=-4\Rightarrow x=-4.3=-12\)
\(\frac{y}{5}=-4\Rightarrow y=-4.5=-20\)
\(\frac{z}{-2}=-4\Rightarrow z=\left(-4\right)\left(-2\right)=8\)
theo đề bài,ta có:
x/3 = y/5 = -z/2 và 5x - y + 3z = -16
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có :
x/3 = y/5 = -z/2 = (5x - y + 3z) / (5.3 - 5 + 3.2) = -16 / 16 = -1
Suy ra:
x/3 = -1 => x = -1.3 = -3
y/5 = -1 => y = -1.5 = -5
-z/2 = -1 => -z = -1.2 = -2 => z = 2
Vậy x = -3 ; y = -5 ; z = 2
C1: Ta có \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5-6}=\frac{-16}{4}=-4\)\(\Rightarrow\hept{\begin{cases}x=-12\\y=-20\\z=8\end{cases}}\)
C2: Ta có \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)\(\Rightarrow\hept{\begin{cases}y=\frac{5}{3}x\\z=\frac{-2}{3}x\end{cases}}\Rightarrow5x-y+3z=5x-\frac{5}{3}x-2x=-16\Rightarrow x=-12\)\(\Rightarrow\hept{\begin{cases}y=-20\\z=8\end{cases}}\)
C1:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3}{15-5-6}=\frac{-16}{4}-4\left\{y=-20\right\}z=80\)
C2:
\(=\hept{\begin{cases}y=\frac{5}{3}x\\z=\frac{-2}{3}\Rightarrow5x-y-3=5x-\frac{5}{3}x-2x=-16\Rightarrow=-12\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=-20\\z=8\end{cases}}\)
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15