1) Cho a,b,ca,b,c là các số thực dương thoả: abc=1abc=1. Cmr:aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤12) Cho a,b,ca,b,c là các số thực dương thoả mãn: a2+b2+c2=1a2+b2+c2=1. Tìm giả trị nhỏ nhất của:abc+bca+cababc+bca+cab3) Cho a≥6a≥6. CMR: a2+6√a−√6≥36a2+6a−6≥364) Cho a,b,c,da,b,c,d là các số nguyên và 1≤a≤b≤c≤d≤901≤a≤b≤c≤d≤90. Tìm giá trị nhỏ nhất...
Đọc tiếp
1) Cho a,b,ca,b,c là các số thực dương thoả: abc=1abc=1. Cmr:
aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1aba5+b5+ab+bcb5+c5+bc+cac5+a5+ca≤1
2) Cho a,b,ca,b,c là các số thực dương thoả mãn: a2+b2+c2=1a2+b2+c2=1. Tìm giả trị nhỏ nhất của:
abc+bca+cababc+bca+cab
3) Cho a≥6a≥6. CMR: a2+6√a−√6≥36a2+6a−6≥36
4) Cho a,b,c,da,b,c,d là các số nguyên và 1≤a≤b≤c≤d≤901≤a≤b≤c≤d≤90. Tìm giá trị nhỏ nhất của: P=ab+3cdP=ab+3cd
5) Cho các số thực dương x,a,b,cx,a,b,c thoả điều kiện: x2=a2+b2+c2x2=a2+b2+c2.
CMR: ax+2a+bx+2b+c2+2c≤32+√3ax+2a+bx+2b+c2+2c≤32+3
6) Tìm giá trị lớn nhất và nhỏ nhất của hàm số:
y=2+√2sin(x+Π4)+2√1+sinx+cosx+sinxcosxy=2+2sin(x+Π4)+21+sinx+cosx+sinxcosx, với x∈Rx∈R
7) Cho x>0x>0, y>0y>0 và x+2y<5Π4x+2y<5Π4. CMR:
cos(x+y)<ysinxxsinycos(x+y)<ysinxxsiny
x:y:z=2:3:(-4)
=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)
Theo tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y+z}{2-3+\left(-4\right)}=\frac{-125}{-5}=25\)
=>x=2.25=50, y=3.25=75, z=-4.25=-100
Kết luận.
x-12=y-34=z-56
=>x=z-44, y=z-22, thay vào 3x-2y+z=4 ta có:
3(z-44)-2(z-22)+z=4
<=>3z-132-2z+44+z=4
<=>2z=92
<=>z=46
=>x=46-44=2, y=46-22=24