\(\dfrac{2x+1}{5}=\dfrac{4y-5}{9}=\dfrac{2x+4y-4}{7x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Ta có \(\dfrac{2x+1}{5}\)=\(\dfrac{4y-5}{9}\)=\(\dfrac{2x+4y-4}{7x}\)=

\(\dfrac{2x+1+4y-5}{14}\)=\(\dfrac{2y+4y-4}{14}\)

Từ \(\dfrac{2x+4y-4}{14}\)=\(\dfrac{2x+4y-4}{7x}\)\(\Rightarrow\)14=7x\(\Rightarrow\)x=2\(\Rightarrow\)\(\dfrac{2x+1}{5}\)=\(\dfrac{4y-5}{9}\)=1

\(\Rightarrow\) y= (9+5):4=3,5
Vậy x=2 y=3,5
5 tháng 4 2017

\(\dfrac{2x+1}{5}=\dfrac{4y-5}{9}=\dfrac{2x+4y-4}{7x\left(?\right)}\) lớp 7 sao khó vậy

16 tháng 6 2017

b)x=2;y=3

16 tháng 6 2017

a) x=2 ; y=14/4

29 tháng 10 2017

\(a,\dfrac{x+1}{3}=\dfrac{y+2}{2}=\dfrac{z+9}{1}\)

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x+1}{3}=\dfrac{y+2}{2}=\dfrac{z+9}{1}=\dfrac{x-y-z+1-2-9}{3-2-1}=\dfrac{22-10}{0}\left(loại\right)\)

Vậy \(x;y;z\in\varnothing\)

NV
23 tháng 2 2019

a/ Do \(x+y=22\Rightarrow y=22-x\)

\(\Rightarrow\dfrac{4+x}{7+22-x}=\dfrac{4}{7}\Leftrightarrow\dfrac{4+x}{29-x}=\dfrac{4}{7}\)

\(\Leftrightarrow7\left(4+x\right)=4\left(29-x\right)\Leftrightarrow28+7x=116-4x\)

\(\Leftrightarrow11x=88\Rightarrow x=8\)

\(\Rightarrow y=22-x=14\)

b/ \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow y=\dfrac{4x}{3}\)

\(\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow z=\dfrac{6y}{5}\) \(\Rightarrow z=\dfrac{6}{5}\left(\dfrac{4x}{3}\right)=\dfrac{8x}{5}\)

Vậy \(M=\dfrac{2x+3y+4z}{3x+4y+5z}=\dfrac{2x+3.\dfrac{4x}{3}+4.\dfrac{8x}{5}}{3x+4.\dfrac{4x}{3}+5.\dfrac{8x}{5}}\)

\(\Rightarrow M=\dfrac{x\left(2+4+\dfrac{32}{5}\right)}{x\left(3+\dfrac{16}{3}+8\right)}=\dfrac{\dfrac{62}{5}}{\dfrac{49}{3}}=\dfrac{186}{245}\)

23 tháng 2 2019

Câu a:

Ta có: \(x+y=22\Rightarrow y=22-x\)

\(\Rightarrow\dfrac{4+x}{7+22-x}=\dfrac{4}{7}\Leftrightarrow\dfrac{4+x}{29-x}=\dfrac{4}{7}\)

\(\Leftrightarrow7\left(4+x\right)=4\left(29-x\right)\Leftrightarrow28+7x=116-4x\)

\(\Leftrightarrow11x=88\Rightarrow x=8\)

\(\Rightarrow y=22-x=22-8=14\)

Vậy \(x=8,y=14\)

10 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{2x+1}{5}=\frac{4y-2}{7}=\frac{2x+4y-1}{6x}=\frac{\left(2x+1\right)+\left(4y-2\right)}{5+7}=\frac{2x+4y-1}{12}\)

\(\Rightarrow\frac{2x+4y-1}{6x}=\frac{2x+4y-1}{12}\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

Thay x = 2 , ta được :

\(\frac{2x+1}{5}=\frac{4y-2}{7}\)

hay \(1=\frac{4y-2}{7}\Rightarrow4y-2=7\Rightarrow4y=9\Rightarrow y=\frac{9}{4}\)

Vậy x = 2 ; y = \(\frac{9}{4}\)

17 tháng 11 2017

Ta có : 2x+1 /5 = 3y-2/7 = 2x+3y -1 /6x

=> 2x+1+3y-2 / 5+7 = 2x+3y-1 /6x

=> 2x+3y-1 / 12 = 2x+3y-1 / 6x

=> 12 = 6x => x =2