K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 4 2020

Lời giải:

$z^2+2x^2+6xy+20+4z+9y^2-8x=0$

$\Leftrightarrow (z^2+4z+4)+(x^2+6xy+9y^2)+(x^2-8x+16)=0$

$\Leftrightarrow (z+2)^2+(x+3y)^2+(x-4)^2=0$

Vì $(z+2)^2\geq 0; (x+3y)^2\geq 0; (x-4)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì $(z+2)^2=(x+3y)^2=(x-4)^2=0$

\(\Rightarrow \left\{\begin{matrix} z+2=0\\ x+3y=0\\ x-4=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} z=-2\\ x=4\\ y=\frac{-4}{3}\end{matrix}\right.\)

25 tháng 6 2016

\(\Leftrightarrow\hept{\begin{cases}6x-5y=0\\8y-4z=0\\2x+y-z-4=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x=5y\\2y=z\\2x+y-z=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=\frac{z}{12}\\2x+y-z=4\end{cases}}\)

\(\Leftrightarrow\frac{x}{5}=\frac{y}{6}=\frac{z}{12}=\frac{2x+y-z}{10+6-12}=\frac{4}{4}=1\)

\(\Rightarrow x=5\)

      \(y=6\)

       \(z=12\)

5 tháng 9 2019

2xy=\(\frac{4y}{3}\) = z 

=2xy.x^2+2xy.xy-2xy.3y^2=2xy.x2+2xy.xy−2xy.3y2

=2x^3y+2x^2y^2-6xy^3=2x3y+2x2y2−6xy3

\(-116-116\)

=-232

21 tháng 3 2019

Tham khảo nhé:Câu hỏi của Victor JennyKook - Toán lớp 7 - Học toán với OnlineMath

25 tháng 7 2017

a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)

     \(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)

THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)

\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)

Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)

             \(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)

KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)

25 tháng 7 2017

b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)  

                \(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)

Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :

\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)

\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)

\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)

Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)

     \(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)

NV
2 tháng 7 2020

\(2x^2+9y^2-6xy+4x+5\)

\(=\left(x^2-6xy+9y^2\right)+\left(x^2+4x+4\right)+1\)

\(=\left(x-3y\right)^2+\left(x+2\right)^2+1>0\) ;\(\forall x;y\)

\(10x^2+10xy+25y^2-8x+20\)

\(=x^2+10xy+25y^2+9x^2-8x+\frac{16}{9}+\frac{164}{9}\)

\(=\left(x+5y\right)^2+\left(3x-\frac{4}{3}\right)^2+\frac{164}{9}>0\); \(\forall x;y\)