Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: x + y + z ≠≠ 0
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
xy+z+1xy+z+1 = yx+z+2yx+z+2 = zx+y−3zx+y−3 = x+y+zy+z+1+x+z+2+x+y−3x+y+zy+z+1+x+z+2+x+y−3
= x+y+zx+y+z+x+y+zx+y+zx+y+z+x+y+z = x+y+z2(x+y+z)x+y+z2(x+y+z) = 1212
⇒ x + y + z = 1212
⇒ x + y = 1212 - z
x + z = 1212 - y
y + z = 1212 - x
Thay y + z + 1 = 1212 - x + 1
⇒ x12−x+1x12−x+1 = 1212
⇒ 2x = 1212 - x + 1
⇒ 2x + x = 1212 + 1
⇒ 3x = 3232
⇒ x = 1212
Thay x + z + 2 = 1212 - y + 2
⇒ y12−y+2y12−y+2 = 1212
⇒ 2y = 1212 - y + 2
⇒ 2y + y = 1212 + 2
⇒ 3y = 5252
⇒ y = 5656
Thay x + y - 3 = 1212 - z - 3
⇒ z12−z−3=1/2
⇒ 2z = 1212 - z - 3
⇒ 2z + z = 1212 - 3
⇒ 3z = −52−52
⇒ z = −56−56
TH2: x + y + z = 0
⇒ xy+z+1xy+z+1 = yx+z+2yx+z+2 = zx+y−3zx+y−3 = 0
⇒ x = y = z = 0
Vậy..................
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z+1}{x}\)=\(\frac{x+z+2}{y}\)=\(\frac{x+y-3}{z}\)=\(\frac{2.\left(x+y+z\right)}{x+y+z}\)= 2
=> x + y + z = \(\frac{1}{2}\)
Tự tính nốt nha =)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x
y + z + 1 =
y
x + z + 2 =
z
x + y − 3 =
x + y + z
2. x + y + z = 2
=> x + y + z =1/2
bn tự tn=nhs nốt nha
chúc bn hk tố @_@
\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{z+y-3}{z}=\frac{1}{x+y+z}\)
\(=\frac{y+z+z+x+x+y+1+2-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)
\(\frac{y+z+1}{x}=2\)
\(\Rightarrow y+z+1=2x\)
\(x+y+z+1=3x\Rightarrow\frac{3}{2}=3x\)
Tương tự với mấy cái khác bạn tính được x,y,z
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+z+x+2+x+y-3}{x+y+z}\)
\(\Rightarrow\frac{1}{x+y+z}=\frac{2x+2y+2z}{x+y+z}\)
\(\Rightarrow1=2\left(x+y+z\right)\)
\(\Rightarrow x+y+z=\frac{1}{2}\left(1\right)\)
Thay vào đề đc :
\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{\frac{1}{2}}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(2\right)\\z+x+2=2y\left(3\right)\\x+y-3=2z\left(4\right)\end{cases}}\)
Từ (2) => x + y + z + 1 = 3x
Thay (1) vào đc \(\frac{1}{2}+1=3x\)
\(\Leftrightarrow3x=\frac{3}{2}\)
\(\Leftrightarrow x=\frac{1}{2}\)
Từ (3) => x + y + z + 2 = 3y
Thay (1) vào đc \(\frac{1}{2}+2=3y\)
\(\Leftrightarrow y=\frac{5}{6}\)
Khi đó \(z=\frac{1}{2}-x-y=\frac{1}{2}-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=2\)
Suy ra: \(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)(*)
Ta có: \(\frac{y+z+1}{x}=2\Leftrightarrow y+z+1=2x\Leftrightarrow x+y+z+1=3x\Leftrightarrow\frac{1}{2}+1=3x\Leftrightarrow x=\frac{1}{2}\)
\(\frac{x+z+2}{y}=2\Leftrightarrow x+z+2=2y\Leftrightarrow x+y+z+2=3y\Leftrightarrow\frac{1}{2}+2=3y\Leftrightarrow y=\frac{5}{6}\)
Từ (*) suy ra: \(z=\frac{1}{2}-x-y=\frac{1}{2}-\frac{1}{2}-\frac{5}{6}\Leftrightarrow z=-\frac{5}{6}\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=-\frac{5}{6}\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\left(\cdot\right)\)
Ta có : \(\frac{y+z+1}{x}=2\Leftrightarrow y+z+1=2x\Rightarrow x+y+z+1=3x\Rightarrow\frac{1}{2}+1=3x\Leftrightarrow x=\frac{1}{2}\)
\(\frac{x+z+2}{y}=2\Leftrightarrow x+z+2=2y\Leftrightarrow x+y+z+2=3y\Leftrightarrow\frac{1}{2}+2=3y\Leftrightarrow y=\frac{5}{6}\)
Từ \(\left(\cdot\right)\Rightarrow z=\frac{1}{2}-x-y=\frac{1}{2}-\frac{1}{2}-\frac{5}{6}\Leftrightarrow z=-\frac{5}{6}\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=-\frac{5}{6}\)
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
mik đồng ý với cánh diều tuổi thơ mà câu này cực kì đơn giản.
tick cho mik nhé.