Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{y}{5}\)
Áp dụng tc của dãy tỉ só bằng nhau
\(\Rightarrow\frac{3x}{6}=\frac{y}{5}=\frac{3x-y}{6-5}=\frac{10}{1}=10\)
=> x=2.10=20
y=5.10=50
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{xy}{10}=\frac{30}{10}=3\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{12}\\x=-\sqrt{12}\end{array}\right.\)
\(\left[\begin{array}{nghiempt}y=\sqrt{75}\\y=-\sqrt{75}\end{array}\right.\)
Mà 2;5 cùng dấu
=> x; y cùng dấu
Vậy \(\left(x;y\right)=\left(\sqrt{12};\sqrt{75}\right);\left(-\sqrt{12};-\sqrt{75}\right)\)
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=8.2=16\\y=12.2=24\\z=15.2=30\end{cases}}\)
Vậy x, y, z lần lượt là 16, 24, 30
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}\Rightarrow}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\hept{\begin{cases}\frac{x}{8}=2\Rightarrow x=16\\\frac{y}{12}=2\Rightarrow y=24\\\frac{z}{15}=2\Rightarrow z=30\end{cases}}\)
Thèo đề bài, ta có:
\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
x ; y ; z thì bạn tự tìm nhé , chắc cái này không khó đâu nhỉ ??
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\) \(=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\frac{x}{2}=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)
\(\frac{y}{4}=\frac{1}{4}\Rightarrow y=1\)
\(\frac{z}{6}=\frac{1}{4}\Rightarrow z=\frac{3}{2}\)
=>\(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\)
=>\(\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)
mà x2,y2,z2 \(\ge\)0
=>\(\frac{x^2}{2},\frac{y^2}{3},\frac{z^2}{4},\frac{x^2}{5},\frac{y^2}{5},\frac{z^2}{5}\ge0\)
\(\Rightarrow\left(\frac{x^2}{2}-\frac{x^2}{5}\right)\ge0,\left(\frac{y^2}{3}-\frac{y^2}{5}\right)\ge0,\left(\frac{z^2}{4}-\frac{z^2}{5}\right)\ge0\)
Dấu bằng xảy ra khi:
\(\frac{x^2}{2}=\frac{x^2}{5},\frac{y^2}{3}=\frac{y^2}{5},\frac{z^2}{4}=\frac{z^2}{5}\)
\(\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)