\(\dfrac{4}{x+1}\)=\(\dfrac{2}{y-2}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Tìm x, y, z biết:

a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và 2x + 3y + z = 17

Giải

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\) và 2x + 3y + z = 17

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x+3y+z}{4+9+4}=\dfrac{17}{17}=1\)

\(\dfrac{x}{2}=1\Rightarrow x=2\)

\(\dfrac{y}{3}=1\Rightarrow y=3\)

\(\dfrac{z}{4}=1\Rightarrow z=4\)

Vậy...

b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và (x - y)2 + (y - z)2 = 2

Giải

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{\left(x-y\right)^2+\left(y-z\right)^2}{\left(2-3\right)^2+\left(3-4\right)^2}=\dfrac{2}{2}=1\)

\(\dfrac{x}{2}=1\Rightarrow x=2\)

\(\dfrac{y}{3}=1\Rightarrow y=3\)

\(\dfrac{z}{4}=1\Rightarrow z=4\)

Vậy...

22 tháng 7 2017

\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)

\(\Rightarrow x\left(1-2y\right)=40\)

\(\Rightarrow x;1-2y\in U\left(40\right)\)

\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)

Mà 1-2y lẻ nên:

\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)

\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)

b tương tự.

c) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)

d tương tự

1 tháng 1 2018

Tên của mày là Tôm

1 tháng 1 2018

bài này cũng khó đấy!

1 tháng 1 2018

\(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)

\(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)

Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)

\(\Rightarrow\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.20=40\\z=2.32=64\end{matrix}\right.\)

Vậy...

5 tháng 6 2018

Ta có : \(\dfrac{x}{y}\) = \(\dfrac{7}{20}\) \(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) ( 1)

Ta có : \(\dfrac{y}{z}=\dfrac{5}{8}\) \(\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\)

\(\Rightarrow\dfrac{y}{5}.\dfrac{1}{4}=\dfrac{z}{8}.\dfrac{1}{4}\)

\(\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)

Từ (1) và (2)

\(\Rightarrow\) \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)

Đặt \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=k\)

\(\Rightarrow x=7k\) ; \(y=20k\) ; \(z=32k\)

Thay \(x=7k\) ; \(y=20k\) ; \(z=32k\) vào \(2x+5y-2z=100\)

\(\Rightarrow2.\left(7k\right)+5.\left(20k\right)-2.\left(32k\right)\) \(=100\)

\(\Rightarrow\)\(14k+100k-64k=100\)

\(\Rightarrow k.\left(14+100-64\right)=100\)

\(\Rightarrow k.50=100\)

\(\Rightarrow k=100:50\) \(\Rightarrow k=2\)

\(\Rightarrow x=7k=7.2=14\)

\(\Rightarrow y=20k=20.2=40\)

\(\Rightarrow z=32k=32.2=64\)

Vậy \(x=14\) ; \(y=40\) ;\(z=64\)

NV
21 tháng 2 2020

ĐKXĐ: ...

\(\Leftrightarrow40+2xy=x\)

\(\Leftrightarrow x\left(1-2y\right)=40\)

Do 40 có đúng 2 ước lẻ là 1 và -1; \(1-2y\) lẻ nên ta có các trường hợp:

\(\left[{}\begin{matrix}1-2y=1\\x=40\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=0\\x=40\end{matrix}\right.\)

\(\left[{}\begin{matrix}1-2y=-1\\x=-40\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=1\\x=-40\end{matrix}\right.\)

12 tháng 4 2024

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4 2024

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)