Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và 2x + 3y + z = 17
Giải
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\) và 2x + 3y + z = 17
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x+3y+z}{4+9+4}=\dfrac{17}{17}=1\)
\(\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{4}=1\Rightarrow z=4\)
Vậy...
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và (x - y)2 + (y - z)2 = 2
Giải
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{\left(x-y\right)^2+\left(y-z\right)^2}{\left(2-3\right)^2+\left(3-4\right)^2}=\dfrac{2}{2}=1\)
\(\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{4}=1\Rightarrow z=4\)
Vậy...
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
\(\Rightarrow x;1-2y\in U\left(40\right)\)
\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Mà 1-2y lẻ nên:
\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)
b tương tự.
c) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)
d tương tự
\(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)
\(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
\(\Rightarrow\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.20=40\\z=2.32=64\end{matrix}\right.\)
Vậy...
Ta có : \(\dfrac{x}{y}\) = \(\dfrac{7}{20}\) \(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) ( 1)
Ta có : \(\dfrac{y}{z}=\dfrac{5}{8}\) \(\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\)
\(\Rightarrow\dfrac{y}{5}.\dfrac{1}{4}=\dfrac{z}{8}.\dfrac{1}{4}\)
\(\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)
Từ (1) và (2)
\(\Rightarrow\) \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
Đặt \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=k\)
\(\Rightarrow x=7k\) ; \(y=20k\) ; \(z=32k\)
Thay \(x=7k\) ; \(y=20k\) ; \(z=32k\) vào \(2x+5y-2z=100\)
\(\Rightarrow2.\left(7k\right)+5.\left(20k\right)-2.\left(32k\right)\) \(=100\)
\(\Rightarrow\)\(14k+100k-64k=100\)
\(\Rightarrow k.\left(14+100-64\right)=100\)
\(\Rightarrow k.50=100\)
\(\Rightarrow k=100:50\) \(\Rightarrow k=2\)
\(\Rightarrow x=7k=7.2=14\)
\(\Rightarrow y=20k=20.2=40\)
\(\Rightarrow z=32k=32.2=64\)
Vậy \(x=14\) ; \(y=40\) ;\(z=64\)
ĐKXĐ: ...
\(\Leftrightarrow40+2xy=x\)
\(\Leftrightarrow x\left(1-2y\right)=40\)
Do 40 có đúng 2 ước lẻ là 1 và -1; \(1-2y\) lẻ nên ta có các trường hợp:
\(\left[{}\begin{matrix}1-2y=1\\x=40\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=0\\x=40\end{matrix}\right.\)
\(\left[{}\begin{matrix}1-2y=-1\\x=-40\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=1\\x=-40\end{matrix}\right.\)
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)