K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{7}\)=> \(\frac{x}{-6}=\frac{y}{14}\)(1)

\(\frac{y}{-2}=\frac{z}{5}\)=> \(\frac{y}{14}=\frac{z}{-35}\)(2)

Từ (1), (2) => \(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}\)và -2x - 4y + 5z = 146

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}=\frac{-2x-4y+5z}{-2.\left(-6\right)-4.14+5\left(-35\right)}=\frac{146}{-219}=-\frac{2}{3}\)

=> x = \(-\frac{2}{3}.\left(-6\right)\)= 4

     y = \(-\frac{2}{3}.14\)\(-\frac{28}{3}\)

     z = \(-\frac{2}{3}.\left(-35\right)\)\(\frac{70}{3}\)

=>x/6=y/-14

y/-14=z/35

=>x/6=y/-14=z/35

=>-2x/-12=4y/-56=5z/175

=>-2x-4y+5z/-12+56+175=146/219=2/3

=>x=4,y=-28/3,z=70/3

5 tháng 10 2019

a) Ta có:

\(\frac{x}{-3}=\frac{y}{7}\Rightarrow\frac{x}{6}=\frac{y}{-14}.\)

\(\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{y}{-14}=\frac{z}{35}.\)

=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}.\)

=> \(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}\)\(-2x-4y+5z=146.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}=\frac{-2x-4y+5z}{\left(-12\right)-\left(-56\right)+175}=\frac{146}{219}=\frac{2}{3}.\)

\(\left\{{}\begin{matrix}\frac{x}{6}=\frac{2}{3}\Rightarrow x=\frac{2}{3}.6=4\\\frac{y}{-14}=\frac{2}{3}\Rightarrow y=\frac{2}{3}.\left(-14\right)=-\frac{28}{3}\\\frac{z}{35}=\frac{2}{3}\Rightarrow z=\frac{2}{3}.35=\frac{70}{3}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(4;-\frac{28}{3};\frac{70}{3}\right).\)

Chúc bạn học tốt!

5 tháng 10 2019

a) Có: \(\frac{x}{-3}=\frac{y}{7};\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}=\frac{-2x-4y+5z}{\left(-2\right)\cdot6-4\cdot\left(-14\right)+5\cdot35}=\frac{146}{219}=\frac{2}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{6}=\frac{2}{3}\Rightarrow x=\frac{2}{3}\cdot6=4\\\frac{y}{-14}=\frac{2}{3}\Rightarrow y=\frac{2}{3}\cdot\left(-14\right)=\frac{-28}{3}\\\frac{z}{35}=\frac{2}{3}\Rightarrow z=\frac{2}{3}\cdot35=\frac{70}{3}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(4;\frac{-28}{3};\frac{70}{3}\right)\)

b) Có: \(-3x=4y;6y=7z\Rightarrow\frac{x}{4}=\frac{y}{-3};\frac{y}{7}=\frac{z}{6}\Rightarrow\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{28}=\frac{y}{-21}=\frac{z}{-18}=\frac{x-2y+3z}{28-2\cdot\left(-21\right)+3\cdot\left(-18\right)}=\frac{-48}{16}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{28}=-3\Rightarrow x=\left(-3\right)\cdot28=-84\\\frac{y}{-21}=-3\Rightarrow y=\left(-3\right)\cdot\left(-21\right)=63\\\frac{z}{-18}=-3\Rightarrow z=\left(-3\right)\cdot\left(-18\right)=54\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(-84;63;54\right)\)

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

30 tháng 9 2019

a)\(2x=3y,4y=5z\Leftrightarrow\frac{x}{3}=\frac{y}{2},\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{x}{15}=\frac{y}{10},\frac{y}{10}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\Leftrightarrow\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}\)

ADTCDTS=NHAU TA CÓ

\(\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}=\frac{2x+y-2z}{30+10-16}=\frac{24}{24}=1\)

x=15

y=10

z=8

b) Ta có BCNN(2,3,4)=12

\(\Rightarrow\frac{2x}{12}=\frac{3x}{12}=\frac{4z}{12}\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\Leftrightarrow\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}\)

ADTCDTS=NHAU TA CÓ

\(\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{36+16+9}=\frac{61}{61}=1\)

\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow x=+_-6\)

\(\frac{y^2}{16}=1\Rightarrow x=+_-4\)

\(\frac{z^2}{9}=1\Rightarrow z=+_-3\)

TUỰ KẾT LUẬN NHA BẠN

C)\(\frac{x-6}{3}=\frac{y-8}{4}=\frac{z-10}{5}\Leftrightarrow\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}\)

ADTCDTS=NHAU TA CÓ

\(\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}=\frac{\left(x^2-36\right)+\left(y^2-64\right)+\left(z^2-100\right)}{9+16+25}\)

\(=\frac{x^2-36+y^2-64+z^2-100}{50}=\frac{\left(x^2+y^2+z^2\right)-\left(36-64-100\right)}{50}\)

\(=\frac{\left(x^2+y^2+z^2\right)-\left(36+64+100\right)}{50}=\frac{200-200}{50}=\frac{0}{50}=0\)

\(\Rightarrow\frac{x^2-36}{9}=0\Rightarrow x^2-36=0\Rightarrow x^2=36\Rightarrow x=+_-6\)

\(\frac{y^2-64}{16}=0\Rightarrow y^2-64=0\Rightarrow y^2=64\Rightarrow y==+_-8\)

\(\frac{z^2-100}{25}=0\Rightarrow z^2-100=0\Rightarrow z^2=100\Rightarrow z=+_-10\)

TỰ KẾT LUẠN NHA

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

5 tháng 11 2017

Tớ chỉ làm câu b thôi nhé

Nếu x/2=y/3,y/5=z/7 Suy ra y là 15 phần, x là 10 phần, z là 21 phần

92:(15+10+21)=2

x=2.10=20

y=2.15=30

z=2.21=42

14 tháng 10 2019

a) Ta có:

\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) (1)

\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}.\)

Có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}.\)

\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}.\)

=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)\(x-y-z=1.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{1}{-4}=\frac{-1}{4}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=-\frac{1}{4}\Rightarrow x=\left(-\frac{1}{4}\right).20=-5\\\frac{y}{15}=-\frac{1}{4}\Rightarrow y=\left(-\frac{1}{4}\right).15=-\frac{15}{4}\\\frac{z}{9}=-\frac{1}{4}\Rightarrow z=\left(-\frac{1}{4}\right).9=-\frac{9}{4}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(-5;-\frac{15}{4};-\frac{9}{4}\right).\)

Chúc bạn học tốt!

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)