K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 5x=2y⇒2x=5y5x=2y⇒2x=5y(1)

3y=5z⇒5y=3z3y=5z⇒5y=3z (2)

Từ (1) và (2) ,đặt: 2x=5y=3z=k⇒⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=2k=2288y=5k=5288z=3k=32882x=5y=3z=k⇒{x=2k=2288y=5k=5288z=3k=3288 (3)

Từ (1) và (2) theo tính chất tỉ dãy số bằng nhau ,ta có:

2x=5y=3z=2−5+3x−y+z=02882x=5y=3z=2−5+3x−y+z=0288(4)

Suy ra k = 288. Dựa và (3) ta có: ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=2k=2288y=5k=5288z=3k=3288{x=2k=2288y=5k=5288z=3k=3288

Vậy .....

21 tháng 9 2021

này áp dụng tính chất dãy tỉ số bằng nhau

5 tháng 8 2019

Ta có: 2x + 3y + 5z - 119 = 0

=>  2x + 3y + 5z = 119

 \(\frac{x+2}{3}=\frac{y+3}{5}=\frac{z-4}{7}\Leftrightarrow\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}=\frac{2x+4+3y+9+5z-20}{6+15+35}=\frac{119+4+9-20}{56}=\frac{112}{56}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x+2}{3}=2\\\frac{y+3}{5}=2\\\frac{z-4}{7}=2\end{cases}\Rightarrow}\hept{\begin{cases}x+2=6\\y+3=10\\z-4=14\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=7\\z=18\end{cases}}\)

Vậy...

7 tháng 7 2017

Vì 5x = 2y nên x/2 = y/5 (1)

Vì 3y = 5z nên y/5 = z/3 (2)

Từ  (1) và (2) ta suy ra x/2 = y/5 =z/3. áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/2 = y/5 = z/3 = x + y +z / 2 +5 +3 =720/10 =72

suy ra x/2=72 hay x=72.2=144;

           y/5=72 hay y=72.5=360;

           z/3=72 hay z=72.3=216

Vậy x=144;y=360;z=216

9 tháng 7 2017

CẢM ƠN BẠN NHA

28 tháng 6 2021

Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

  7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\)=> \(\hept{\begin{cases}x=20\\y=30\\z=42\end{cases}}\)

Vậy ...

28 tháng 6 2021

Trả lời :

Ta có : \(3x=2y \Rightarrow \frac{x}{2};7y=5z \Rightarrow\frac{y}{5}=\frac{z}{7} \)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}\Rightarrow}\frac{x}{10}=\frac{y}{15}=\frac{z}{21}}\) 

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15-21}=\frac{32}{16} \Rightarrow \hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)

Vậy : \(x=20; y=30; z=42\)

~HT~

12 tháng 9 2016

--33 là 33 à

12 tháng 9 2016

x - y + z = - 33 à bạn

12 tháng 12 2019

\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\)

\(3x=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{3}=\frac{3x+2y-z}{6+10-3}=\frac{26}{13}=2\)

\(\Rightarrow x=4;y=10;z=6\)

28 tháng 9 2018

a) 5y = 72

=> y = 72/5

2x = 3y

<=> 2x = 3 . 72/5

<=> 2x = 216 / 5

<=> x =108/5

3x - 7y + 5z = -30

<=> 3 . 108/5 - 7. 72/5 + 5z = - 30

<=> 324/5 - 504/5 +5z = -30

<=> 5z = 6

<=> x = 6/5 

28 tháng 9 2018

câu a đoạn cuối z = 6/5 nha 

b) x : y : z = 5 : 3 :4 

\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)

Áp dụng t/c dãy tỉ số = nhau , ta có 

\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=\frac{-121}{7}\)

=> x =-605/ 7

=> y = -363 / 7

=> z = -484 / 7

1. Gọi độ dài 3 cạnh tam giác lần lượt là a,b,c.(có hay ko cx đc, vì trg hợp này đề bài cho sẵn r)(a,b,c \(\inℕ^∗\))

Do cạnh a ngắn hơn cạnh c 8cm nên c-a=8 (cm)

Độ dài 3 cạnh ta, giác tỉ lệ vs 3;4;5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Ap dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{8}{2}=4\)

\(\Rightarrow\hept{\begin{cases}a=4.3=12\\b=4.4=16\\c=4.5=20\end{cases}}\)

Vậy;....

28 tháng 6 2019

2. 

a, x:y:z = 5:3:4 => \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{121}{7}\)

\(\frac{x}{5}=-\frac{121}{7}\Rightarrow x=-\frac{605}{7}\)

\(\frac{y}{3}=\frac{-121}{7}\Rightarrow y=-\frac{363}{7}\)

\(\frac{z}{4}=-\frac{121}{7}\Rightarrow z=-\frac{484}{7}\)

Vậy ... 

b, 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\) ; 3y = 5z => \(\frac{y}{5}=\frac{z}{3}\)

=> \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số  bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)

\(\frac{x}{2}=-97\Rightarrow x=-97.2=-194\)

\(\frac{y}{5}=-97\Rightarrow y=-97.5=-485\)

\(\frac{z}{3}=-97\Rightarrow z=-97.3=291\)

Vậy ...