Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x=4y;2y=5z\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{2}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{15}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{2x}{40}=\dfrac{3y}{45}=\dfrac{5z}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{40}=\dfrac{3y}{45}=\dfrac{5z}{30}\)
\(=\dfrac{2x+3y-5z}{40+45-30}=\dfrac{55}{55}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.20=20\\y=1.15=15\\z=1.6=6\end{matrix}\right.\)
Tương tự
Ta có :
\(2x+3y-5z=55\)
\(3x=4y;2y=5z\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{2}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{16}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{2x+3y-5z}{2.19+3.12-2.16}=\dfrac{55}{22}=\dfrac{5}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{45}{2}\\\dfrac{y}{12}=\dfrac{5}{2}\Leftrightarrow x=30\\\dfrac{z}{16}=\dfrac{5}{2}\Leftrightarrow z=40\end{matrix}\right.\)
Vậy ..............
\(3x=2y;4y=5z\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\Rightarrow\)\(\frac{2x}{20}=\frac{3y}{45}=\frac{5z}{60}=\frac{2x-3y+5z}{125}=\frac{21}{125}\)
\(\frac{2x}{20}=\frac{21}{125}.....................\)
\(\frac{3y}{45}=\frac{21}{125}......................\)
........................................................................................................................................................................................................................................................................................................................................................
\(\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{2}\\ \Leftrightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{6}=\dfrac{2x+3y-5z}{40+45-30}=\dfrac{55}{55}=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=20\\y=15\\z=6\end{matrix}\right.\)
\(\frac{x}{4}=\frac{y}{3};3y=5z\) và x + y + z = 75
Ta có: \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\3y=5z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{3}\end{cases}}\)
=> \(\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}\)
=> \(\frac{x}{20}=\frac{y}{15};\frac{y}{15}=\frac{z}{9}\)
=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x+y+z}{20+15+9}=\frac{75}{44}\)
=> \(\hept{\begin{cases}\frac{x}{20}=\frac{75}{44}\\\frac{y}{15}=\frac{75}{44}\\\frac{z}{9}=\frac{75}{44}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{375}{11}\\y=\frac{1125}{44}\\z=\frac{675}{44}\end{cases}}\)
\(3x=4y;2y=5z\)và x + y - z = 58
Ta có : \(\hept{\begin{cases}3x=4y\\2y=5z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{2}\end{cases}}\)
=> \(\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{2}\)
Từ \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}\\\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{y}{15}=\frac{z}{6}\end{cases}\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{6}=\frac{x+y-z}{20+15-6}=\frac{58}{29}=2}\)
=> \(\hept{\begin{cases}\frac{x}{20}=2\\\frac{y}{15}=2\\\frac{z}{6}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=40\\y=30\\z=12\end{cases}}\)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
a, Ta có : \(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{126}{7}=-18\)
\(x=-90;y=-54;z=-72\)
b, \(5x=2y;3y=5z\Rightarrow\frac{x}{2}=\frac{y}{5};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)
\(x=-194;y=-485;z=-291\)
Theo đề bài, ta có:
\(3x=4y;3y=4z\) hay \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{4}\) và 2x+3y-5z=55
\(\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}=\frac{2x+3y-2z}{2.9+3.12-2.16}=\frac{55}{22}=\frac{5}{2}\)
- \(\frac{x}{9}=\frac{5}{2}.9=\frac{45}{2}\)
- \(\frac{y}{12}=\frac{5}{2}.12=30\)
- \(\frac{z}{16}=\frac{5}{2}.16=40\)
Vậy \(x=\frac{45}{2},y=30,z=40\)
tick đúng cho ng` ta đi
mình cũng đang hắc búa bài này lắm, ai giải đc thì giải hộ tui vs nha. cái đồ k bt làm lại còn bảo k đúng để làm chó à, bực người. đã đang k làm đc toán sẵn gặp con này chắc tui chết mất