Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh \(P\ge\frac{25}{64}\). Thật vậy:
Đặt \(p=x+y+z=\frac{3}{2},q=ab+bc+ca,r=abc\)
Cần chứng minh:
Dễ thấy khi r giảm thì f(r) giảm. Mà theo Schur: -3/8 + (2*q)/3=-1/9*p^3 + 4/9*q*p <= r
Nên \(f\left(r\right)\ge f\left(\frac{2q}{3}-\frac{3}{8}\right)=\frac{\left(4q-3\right)\left(q-6\right)}{9}\ge0\)
Done.
Bunyakovski hả?
Có: \(\left(x^3+y^3+z^3\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}=\frac{2\left(x^2+y^2+z^2\right)^2}{3}\)
Cần chứng minh: \(\frac{2\left(x^2+y^2+z^2\right)^2}{3}+x^2y^2z^2\ge\frac{25}{64}\)
Or \(\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}+\left(x^2y^2z^2+\frac{1}{64}\right)\ge\frac{13}{32}\)
Or: \(\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}+\frac{1}{4}xyz\ge\frac{13}{32}=\frac{13}{108}\left(x+y+z\right)^3\)(*)
(1)
Điều thú vị là BĐT (*) đúng với mọi x,y,z thuộc R thỏa mãn x + y + z \(\ge0\) (nhờ đẳng thức (1) ).
Mà điều này luôn đúng do điều kiện...
dạng này của lớp 7 mà bro
\(x:y:z=3:5:4\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{4}=\frac{x+y+z}{3+5+4}=\frac{96}{12}=8\)
=> x = 24 ; y = 40 ; z = 32
Bài 1 :
\(a)\) Ta có :
\(3x=4y=6z\)
\(\Leftrightarrow\)\(\frac{3x}{12}=\frac{4y}{12}=\frac{6z}{12}\)
\(\Leftrightarrow\)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\)
\(\Leftrightarrow\)\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}=\frac{2x-5z}{8-10}=\frac{-36}{-2}=18\)
Do đó :
\(\frac{x}{4}=18\)\(\Rightarrow\)\(x=18.4=72\)
\(\frac{y}{3}=18\)\(\Rightarrow\)\(y=18.3=54\)
\(\frac{z}{2}=18\)\(\Rightarrow\)\(z=18.2=36\)
Vậy \(x=72\)\(;\)\(y=54\) và \(z=36\)
Chúc bạn học tốt ~
2) Ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{1}{2}\Rightarrow2a=b+c\)
\(\frac{b}{c+a}=\frac{1}{2}\Rightarrow2b=c+a\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow2c=a+b\)
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}=\frac{2c.2a.2b}{b.c.a}=8\)
Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
Theo Đề Ra Ta Có :
x , y , z > 0
Và x + y + z = 180
\(\frac{x}{7}\)= \(\frac{y}{3}\)=\(\frac{z}{8}\)
Áp Dụng T/C dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}+\frac{y}{3}+\frac{z}{8}=\frac{180}{18}\)
\(\frac{x}{7}=\frac{180}{18}\Rightarrow x=70\)
\(\frac{y}{3}=\frac{180}{18}\Rightarrow y=30\)
\(\frac{z}{8}=\frac{180}{18}\Rightarrow z=80\)
MÌnh Nghĩ Là Có Thể Có Error
DỄ LẮM
hiệu số phần số thứ 3 và số thứ nhất là:
7 - 4 = 3 ( phần )
1 phần là :
25 ; 3 = 25/3
x là :
25/3 x 7 = 175/3
y là :
25/3 x 9 = 75
z là :
175/3 - 25 =100 /3