Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\hept{\begin{cases}\left(x-3,5\right)^2\ge0;\forall x\\\left(y-\frac{1}{10}\right)^4\ge0;\forall y\end{cases}\Rightarrow}\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4\ge0;\forall x,y\)
Mà \(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4\le0\)( theo đề bài )
\(\Rightarrow\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-3,5\right)^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3,5\\y=\frac{1}{10}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=3,5\\y=\frac{1}{10}\end{cases}}\)
b) Ta có : \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{3}\right)^2=\frac{1}{4}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{3}\right)^2=\left(\frac{1}{2}\right)^2\\\left(x-\frac{1}{3}\right)^2=\left(-\frac{1}{2}\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{1}{2}\\x-\frac{1}{3}=-\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=-\frac{1}{6}\end{cases}}\)
b) \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=\frac{1}{4}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{1}{4}\\x-\frac{1}{3}=-\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{12}\\x=\frac{1}{12}\end{cases}}\)
d) \(\frac{x+5}{2}=\frac{8}{x+5}\)
\(\Rightarrow\left(x+5\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}x+5=16\\x+5=-16\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=-21\end{cases}}}\)
a)
\(x+\left(x-1\right)+\left(x-2\right)+...+\left(x-50\right)=255\\ x+x-1+x-2+...+x-50=255\\ \left(x+x+x+...+x\right)-\left(1+2+3+...+50\right)\\ 51x-1275=255\\ 51x=1530\\ x=30\)
e)
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\\ x+x+1+x+2+...+x+30=1240\\ \left(x+x+x+...+x\right)+\left(1+2+3+...+30\right)=1240\\ 31x+465=1240\\ 31x=775\\ x=25\)
f)
\(\left(x-1\right)+\left(x-2\right)+...+\left(x-19\right)+\left(x-20\right)=-610\\ x-1+x-2+...+x-19+x-20=-610\\ \left(x+x+x+...+x\right)-\left(1+2+3+...+20\right)=-610\\ 20x-210=-610\\ 20x=-400\\ x=-20\)
d: =>x+5=0 và 3-y=0
=>x=-5 hoặc y=3
e: =>x-2=0 và y+1=0
=>x=2 và y=-1
Bài 1 tự làm!
Bài 2:
a, \(\left(3x-4\right)\left(x-1\right)^3=0\Rightarrow\left[{}\begin{matrix}3x-4=0\\\left(x-1\right)^3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
b, \(2^{2x-1}:4=8^3\Rightarrow2^{2x-1}:2^2=2^9\)
\(\Rightarrow2x-1-2=9\Rightarrow2x-3=9\Rightarrow2x-12\Rightarrow x=6\)
c, Đề chưa rõ
d, \(\left(x+2\right)^5=2^{10}\Rightarrow\left(x+2\right)^5=4^5\Rightarrow x+2=4\Rightarrow x=2\)
e, \(\left(3x-2^4\right).7^3=2.7^4\Rightarrow3x-2^4=2.7^4:7^3\Rightarrow3x-16=2.7=14\)
\(\Rightarrow3x=14+16=30\Rightarrow x=\dfrac{30}{3}=10\)
f, \(\left(x+1\right)^2=\left(x+1\right)^0\Rightarrow\left(x+1\right)^2=1\) (vì x0 = 1)
\(\Rightarrow x+1=1\Rightarrow x=0\)
a) \(\dfrac{5}{7}-1\dfrac{4}{7}\left(450\%+\dfrac{2}{3}x\right)=\dfrac{-1}{14}\)
\(\dfrac{5}{7}-\dfrac{11}{7}\left(\dfrac{9}{2}+\dfrac{2}{3}x\right)=\dfrac{-1}{14}\)
\(\dfrac{11}{7}\left(\dfrac{9}{2}+\dfrac{2}{3}x\right)=\dfrac{5}{7}+\dfrac{1}{14}\)
\(\dfrac{11}{7}\left(\dfrac{9}{2}+\dfrac{2}{3}x\right)=\dfrac{11}{14}\)
\(\dfrac{9}{2}+\dfrac{2}{3}x=\dfrac{11}{14}:\dfrac{11}{7}=\dfrac{11}{14}.\dfrac{7}{11}\)
\(\dfrac{9}{2}+\dfrac{2}{3}x=\dfrac{1}{2}\)
\(\dfrac{2}{3}x=\dfrac{1}{2}-\dfrac{9}{2}=-4\)
\(x=-4:\dfrac{2}{3}=-4.\dfrac{3}{2}=-6\)
Vậy x = \(-6\)
b) \(100=6.7^{\left|x+2\right|}-194\)
\(100+194=6.7^{\left|x+2\right|}\)
\(294=6.7^{\left|x+2\right|}\)
\(294:6=49=7^{\left|x+2\right|}\)
\(\Rightarrow7^2=7^{\left|x+2\right|}\)
\(\Rightarrow2=\left|x+2\right|\Rightarrow\pm2=x+2\)
+ x + 2 = -2 \(\Rightarrow\) x = - 4
+ x + 2 = 2 \(\Rightarrow\) x = 0
Vậy x = - 4 hoặc 0
1: Vì x^2 >=0 với mọi x ; (y- 1/10)^4 >=0 với mọi y
==> x^2 + (y- 1/10)^4 >= 0.
Do đó dấu = xảy ra tức là x^2 + (y- 1/10)^4 =0 <=> x^2 =0 và (y- 1/10)^4 =0 <=> x=0; y=1/10
bài 2 kiểu tương tự nha
(x - 1 )^4sẽ \(0\le\left(x-1\right)^4\)
(y+2)^100 sẽ \(0\le\left(y+2\right)^{100}\)
đến đó bn làm nhé
a) Vì \(x^2\ge0\forall x\)
\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=0;y-\dfrac{1}{10}=0\)
\(\Rightarrow x=0;y=\dfrac{1}{10}\)
b) Vì \(\left(x-1\right)^4\ge0\forall x\)
\(\left(y+2\right)^{100}>0\forall y\)
\(\Rightarrow\left(x-1\right)^4+\left(y+2\right)^{100}\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0;y+2=0\)
\(\Rightarrow x=1;y=-2\)