
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)
\(2x=3y\Rightarrow y=\frac{2x}{3}\)
\(!x+2y!=5\Rightarrow\orbr{\begin{cases}x+2y=5\\x+2y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x+2.\frac{2}{3}x=5\Rightarrow x=\frac{15}{7}\\x+2.\frac{2}{3}x=-5\Rightarrow x=-\frac{15}{7}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}y=\frac{10}{7}\\y=\frac{-10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}z=\frac{6}{7}\\z=\frac{6}{7}\end{cases}}\)
(x,y,z)=(15/7,10/7,6/7)
(x,y,z)=(-15/7,-10/7,-6/7)

a, Vì \(\left|3x-2y\right|\ge0;\left|3y-4z\right|\ge0\Rightarrow\left|3x-2y\right|+\left|3y-4z\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-2y=0\\3y-4z=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\3y=4z\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{9}\end{cases}\Leftrightarrow}\frac{x}{8}=\frac{y}{12}=\frac{z}{9}}\)
\(\Leftrightarrow\frac{x}{8}=\frac{2y}{24}=\frac{3z}{27}=\frac{x-2y+3z}{8-24+27}=\frac{5}{11}\)
từ đây tìm x,y,z
b,Ta có: \(\frac{2x+3}{2}=\frac{3x-6}{5}\Rightarrow5\left(2x+3\right)=2\left(3x-6\right)\Rightarrow10x+15=6x-12\Rightarrow4x=-27\Rightarrow x=\frac{-27}{4}\)
Thay x=-27/4 vào \(\frac{3x-6}{5}=\frac{3x+3y+1}{3x}\), ta được:
\(\frac{3\cdot\left(\frac{-27}{4}\right)-6}{5}=\frac{3.\left(\frac{-27}{4}\right)+3y+1}{3.\left(\frac{-27}{4}\right)}\)
\(\Rightarrow\frac{-21}{4}=\frac{\frac{-77}{4}+3y}{\frac{-81}{4}}\Rightarrow\frac{-77}{4}+3y=\frac{1701}{16}\Rightarrow3y=\frac{2009}{16}\Rightarrow y=\frac{2009}{48}\)
Vậy x=-27/4,y=2009/48

2) Ta có: \(\hept{\begin{cases}3x=2y;7y=5z\\x-y+z=32\end{cases}\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}.}\)
\(\Rightarrow\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
Vậy \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Ủng hộ nha m.n

a, => (x^2/y):(x/y) = 2:16
=> 1/y = 1/8 => y=8 ; x = 128
b, 1+2y/18 = 1+4y/24
<=> (1+2y).24 = (1+4y).18
<=> 24+48y = 18+72y
<=> 72y+18-24-48y=0
<=>24y-6=0
<=> 24y=6
<=> y=6:24 = 1/4
Khi đó : 1+2y/18 = 1+6y/6x
<=> 1+1/2/18 = 1+3/2 / 6x
<=> 1/12 = 5/12x
<=> 12x = 5: 1/12 = 60
<=> x = 60:12 = 5
Vậy .......
k mk nha
Vì: \(\begin{cases}\left|x+3y-1\right|\ge0\\\left|2y-\frac{1}{2}\right|^{200}\ge0\end{cases}\)\(\Rightarrow\left|x+3y-1\right|+\left|2y-\frac{1}{2}\right|^{200}\ge0\)
Nên: \(\left|x+3y-1\right|+\left|2y-\frac{1}{2}\right|^{200}=0\)
\(\Leftrightarrow\begin{cases}x+3y-1=0\\2y-\frac{1}{2}=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=1-3y=1-3\cdot\frac{1}{4}=\frac{1}{4}\\y=\frac{1}{4}\end{cases}\)
\(\Leftrightarrow x=y=\frac{1}{4}\)
\(\left|x+3y-1\right|+\left|2y-\frac{1}{2}\right|^{200}=0\)
\(\Rightarrow\left|x+3y-1\right|=0\) và \(\left|2y-\frac{1}{2}\right|^{200}=0\)
+) \(\left|2y-\frac{1}{2}\right|^{200}=0\)
\(\Rightarrow2y-\frac{1}{2}=0\)
\(\Rightarrow2y=\frac{1}{2}\)
\(\Rightarrow y=\frac{1}{4}\)
+) \(\left|x+3y-1\right|=0\)
\(\Rightarrow x+3y-1=0\)
\(\Rightarrow x+3.\frac{1}{4}=1\)
\(\Rightarrow x+\frac{3}{4}=1\)
\(\Rightarrow x=\frac{1}{4}\)
Vậy \(x=\frac{1}{4},y=\frac{1}{4}\)