Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x-0,2\right)^{10};\left(y+3,1\right)^{20}\ge0\) với mọi \(x,y\)
Mà \(\left(x-0,2\right)^{10}+\left(y+3,1\right)^{20}=0\)
\(< =>\hept{\begin{cases}\left(x-0,2\right)^{10}=0\\\left(y+3,1\right)^{20}=0\end{cases}< =>\hept{\begin{cases}x-0,2=0\\y+3,1=0\end{cases}< =>\hept{\begin{cases}x=0,2\\y=-3,1\end{cases}}}}\)
Vậy \(x=0,2;y=-3,1\)
\(\left(x-0,2\right)^{10}+\left(y+3,1\right)^{20}=0\)
\(\Rightarrow\orbr{\begin{cases}x-0,2=0\\y+3,1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0,2\\y=-3,1\end{cases}}\)
\(\left(x-0,2\right)^{10}+\left(y+3,1\right)^{20}=0\)
\(=>\left[{}\begin{matrix}\left(x-0,2\right)^{10}=0\\\left(y+3,1\right)^{20}=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x-0,2=0\\y+3,1=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=0,2\\y=-3,1\end{matrix}\right.\)
Vậy...
VÌ \(\left(x-0,2\right)^{10}\ge0;\left(y+3,1\right)^{10}\ge0mà\left(x-0,2\right)^{10}+\left(y+3,1\right)^{10}=0\Rightarrow x-0,2=0;y+3,1=0\)
mấy bn của mk ơi !!! tối mở máy vô giúp mk bài nì vs mai mk nộp rujjj lm ơn !!!
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122