Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -12( x - 5 ) + 7( 3 - x ) = 5
-12x + 60 + 21 - 7x = 5
-19x = 5 -81
-19x = -76
x = 76:19
x= 4
b) 30.( x + 2 ) - 6( x - 5 ) - 24x = 100
30x + 60 - 6x + 30 - 24x = 100
0x = 100 - 60 - 30
0x = 10
=> ko có giá trị x thỏa mãn đề bài
Ta có:\(\frac{x^2+3x+9}{x+3}\)=\(\frac{x\left(x+3\right)+9}{x+3}\)= x+\(\frac{9}{x+3}\)
Để x\(^2\)+3x+9 \(⋮\)x+3 \(\Rightarrow\)9\(⋮\)x+3 hay x+3\(\in\)Ư(9)={-1;1;-3;3;-9;9}
\(\Rightarrow\)x+3\(\in\){-1;1;-3;3;-9;9}
\(\Rightarrow\)x\(\in\){-4;-2;-6;0;-12;6}
1)
xy + x - 4y = 12
x + y(x - 4) = 12
y(x - 4) = 12 - x
\(y=\dfrac{-x+12}{x-4}\)
Vì \(x,y\inℕ\) nên
\(\left(-x+12\right)⋮\left(x-4\right)\)
\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)
\(16⋮\left(x-4\right)\)
\(\left(x-4\right)\inƯ\left(16\right)\)
\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)
\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)
\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
2)
(2x + 3)(y - 2) = 15
\(\left(2x+3\right)\inƯ\left(15\right)\)
\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Ta lập bảng
2x + 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y - 2 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
(x; y) | (-1; 17) | (-2; -13) | (0; 7) | (-3; -3) | (1; 5) | (-4; -1) | (6; 3) | (-9; 1) |
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Vẽ tam giác ABF đều ( F nằm trên nữa mặt phẳng bờ AB không chứa C) nằm ngoài tam giác CAB
FB = CD (1)( Vì cùng bằng AB)
Tam giác ACB cân ở C có góc C = 100 độ nên góc CBA = 40 độ
Góc CBF = góc CBA + góc ABF = 100 độ.
Hai tam giác CDB và BFC có : FB = CD ( CMT), CB là cạnh chung, góc DCB = góc FBC (=1000)
=> góc CDB = góc CFB.
Hai tam giác CAF và CBF bằng nhau (c.c.c) => góc AFC = góc BFC = 30 độ.
Vậy góc CDB = 30 độ.
Ta có : (x + 2)(x2 - 9 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x^2-9=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x^2=9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3;3\end{cases}}\)
Ta có : x2(x - 5) + 2(x - 5) = 0
\(\Rightarrow\left(x^2+2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2=0\\x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-2\\x=5\end{cases}}\)
=> x = 5
\(xy=\frac{1}{t}.txy\le\frac{t^2x^2+y^2}{2t}=\frac{\left(3+\sqrt{5}\right)x^2+y^2}{1+\sqrt{5}}\)\(t^2=\frac{3+\sqrt{5}}{2}\)
\(\frac{2\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\left(3+\sqrt{5}\right)\left(2x^2+y^2+z^2+1\right)}\)
\(K=\frac{x^2+y^2+z^2+1}{xy+yz+z}=\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{2.\frac{1+\sqrt{5}}{2}x.y+\left(1+\sqrt{5}\right)yz+2.\frac{1+\sqrt{5}}{2}.z}\)
\(\ge\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\frac{3+\sqrt{5}}{2}x^2+y^2+\frac{1+\sqrt{5}}{2}\left(y^2+z^2\right)+z^2+\frac{3+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{\frac{3+\sqrt{5}}{2}}=\sqrt{5}-1=k\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=1\\y=\frac{1+\sqrt{5}}{2}\\z=\frac{1+\sqrt{5}}{2}\end{cases}}\)
\(M=\frac{x^2+y^2+z^2+1}{xy+y+z}=\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{2.x.\frac{\sqrt{5}-1}{2}y+\left(\sqrt{5}-1\right)y+2.\frac{\sqrt{5}-1}{2}.z}\)
\(\ge\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{x^2+\frac{3-\sqrt{5}}{2}y^2+\frac{\sqrt{5}-1}{2}\left(y^2+1\right)+\frac{3-\sqrt{5}}{2}+z^2}=\sqrt{5}-1=m\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\y=1\\z=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
\(km+k+m=4\)