K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

a)

pt <=>   \(\left(2x^2-8xy+8y^2\right)+\left(7x^2-28x+28\right)=0\)

<=>   \(2\left(x-2y\right)^2+7\left(x-2\right)^2=0\)

TA luôn có:   \(2\left(x-2y^2\right)+7\left(x-2\right)^2\ge0\forall x;y\) 

=> DẤU "=" XẢY RA <=>   \(\hept{\begin{cases}2\left(x-2y\right)^2=0\\7\left(x-2\right)^2=0\end{cases}}\)

<=>   \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)

9 tháng 9 2020

b)

pt <=>   \(x^2+2y^2+5z^2-2xy-4yz-2z+1=0\)

<=>   \(\left(x^2-2xy+y^2\right)+\left(y^2-4yz+4z^2\right)+\left(z^2-2z+1\right)=0\)

<=>   \(\left(x-y\right)^2+\left(y-2z\right)^2+\left(z-1\right)^2=0\)

LẬP LUẬN TƯƠNG TỰ NHƯ CÂU a ta cũng được:

DẤU "=" XẢY RA <=>   \(\left(x-y\right)^2=\left(y-2z\right)^2=\left(z-1\right)^2=0\)

=>   \(x=y=2;z=1\)

4 tháng 3 2017

\(x^2+y^2+z^2-xy-3y-2z+4=0\)không có  thừ số x à.

(\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2=0\)

y=2

13 tháng 8 2017

1)  ta có: x^2-12xy+8^3=-8 <=> x^2-12xy+8y^3+8=0 <=> (x+2y)^3   -6xy(x+2y)  -12xy +8=0

<=> (x+2y+2)^3   -6(x+2y)(x+2y+2)  -6xy(x+2y+2)=0

<=>(x+2y+2)(x^2 +4y^2 +4 +4xy +8y+4x -6x -12y-6xy)=0

<=> (x+2y+2)(x^2 +4y^2 +4 -2xy-2x-4y)=0

<=>\(\orbr{\begin{cases}x+2y+2=0\\x^2+4y^2+4-2xy-2x-4y=0\end{cases}}\)  <=> \(\hept{\begin{cases}x=-2\left(y+1\right)\\y=-\frac{\left(2+x\right)}{2}\end{cases}}\) (vì x^2 +4y^2+4-2xy-2x-4y>0 (tự c/m)  )

Vậy x=...... và y= .....

2) ta có: B= -x^2-y^2+xy+2x+2y

<=> 2 B= -2x^2 -2y^2 +2xy+4x+4y

<=>2B=-(x^2-2xy +y^2) -(x^2 -4x +4) -(y^2 -4y+4)+8

<=> 2B=  -(x-y)^2 -(x-2)^2  -(y-2)^2  +8

Mà (-(x-y)^2 \(\le0\) với mọi x,y

-(x-2)^2\(\le0\) với mọi x'

-(y-2)^2\(\le0\) với mọi y

nên 2B \(\le8\) với mọi x,y => B \(\le4\)với mọi x,y

Dấu '=' xảy ra khi: x=y=2

Vậy GTLN của B là 4 khi x=y=2

19 tháng 10 2019

hgdbfnhsiufheunijssf8732647895479854dfhuefjxdbjsdilkskjjgnlui93902848357475jcnxzn