K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

\(x^2+2xy-7y-12=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(y^2+7y+12\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2=\left(y+3\right)\left(y+4\right)\) (1)

Ta thấy VT là số CP với mọi x;y nguyên ; VP là tích 2 số nguyên liên tiếp nên ko phải là số CP

=> (1) vô lý   Hay PT trên ko có nghiệm x;y nguyên

1 tháng 4 2018

\(x^2+2xy-7y-12=0\)

=> \(x^2+y\left(2x-7\right)=12\)

=> \(y=\frac{12-x^2}{2x-7}=\frac{-\left(x^2-12\right)}{2x-7}\)

Vì y là số nguyên nên

\(x^2-12⋮2x-7\)

=> 2x - 7 \(\in\)Ư(1) 

=> x = -3 , 4

x=-3 cho y \(\notin\)Z

x= 4 cho y = -4 (t/m)

Vậy .........

29 tháng 11 2019

ta có:\(y^2+2xy-7x-12=0\)

\(\Leftrightarrow y^2+2xy+x^2=x^2+7x+12\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+3\right)\left(x+4\right)\)*

 Vế trái của * là số chính phương, vế phải là tích của 2 số liên tiếp nên phải có 1 số bằng 1

Do đó:\(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=3\\y=4\end{cases}}}\)

Vậy phương trình có 2 nghiệm là (x;y)=(-3;3),(-4;4)

5 tháng 6 2017

\(2x^2+7x+7y+2xy+y^2+12=0\)

\(\Leftrightarrow\left(x^2+y^2+4+2\left(xy+2x+2y\right)\right)+3\left(x+y+2\right)+2=-x^2\)

\(\Leftrightarrow\left(x+y+2\right)^2+3\left(x+y+2\right)+2=-x^2\)

\(\Leftrightarrow P^2+3P+2=-x^2\le0\)

\(\Leftrightarrow-2\le P\le-1\)

4 tháng 6 2017

sorry , em lớp 6 , hu hu 

2 tháng 9 2017

 x+y=xy suy ra x+y-xy = 0 
suy ra (x-xy)+y -1 = -1 
suy ra x(1-y)-(1-y)=-1 
suy ra (1-y)(x-1)=-1 
suy ra (1-y) va (x-1) thuoc uoc kua -1 
suy ra 1-y = 1 va x-1=-1 
hoac 1-y=-1 va x-1 =1 
suy ra y=0 va x bag 0 
hoac y =2 va x=2 
vay co 2 cap x,y thoa man la(0;0) va (2;2)

11 tháng 7 2018

\(x^2+2y^2+2xy+y-2=0\)

\(\Rightarrow4x^2+8y^2+8xy+4y-8=0\)

\(\Rightarrow4x^2+8xy+4y^2+4y^2+4y+1=9\)

\(\Rightarrow\left(2x+2y\right)^2+\left(2y+1\right)^2=9\)

Vì \(2y+1\) lẻ nên \(\left(2y+1\right)^2\) lẻ mà \(\left(2y+1\right)^2\le9\)

Nên \(\left(2y+1\right)^2\in\left\{1,9\right\}\)

Với \(\left(2y+1\right)^2=1\) thì \(\left(2x+2y\right)^2=9-1=8\) mà 8 không phải số chính phương (loại)

Với \(\left(2y+1\right)^2=9\)  thì \(\orbr{\begin{cases}2y+1=3\\2y+1=-3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2y=2\\2y=-4\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

\(\Rightarrow\left(2x+2y\right)^2=9-9=0\Rightarrow2x+2y=0\)\(\Rightarrow x+y=0\Rightarrow x=-y\)

Nếu \(y=1\Rightarrow x=-1\)

Nếu \(y=-2\Rightarrow x=2\)

Vậy \(\left(x,y\right)\in\left\{\left(-1,1\right);\left(2;-2\right)\right\}\)