\((2x+y)(x^{3}+z)=xy+3 \)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó Ôn tập cuối năm phần số họcÔn tập cuối năm phần số họcÔn tập cuối năm phần số họcÔn tập cuối năm phần số học

11 tháng 6 2018

Có một số câu thì mình không làm được. Mong bạn thông cảm!!!

Ôn tập cuối năm phần số họcÔn tập cuối năm phần số học

\(1.\)

\(4x^2-12x+9\)

\(=\left(2x\right)^2-12x+3^2=\left(2x-3\right)^2\)

\(2.\)

\(7x^2-7xy-5x+5y\)

\(=7x\left(x-y\right)-5\left(x-y\right)\)

\(\left(7x-5\right)\left(x-y\right)\)

\(3.\)

\(x^3-9x\)

\(=x\left(x^2-9\right)\)

\(=x\left(x-3\right)\left(x+3\right)\)

\(4.\)

\(5x\left(x-y\right)-15\left(x-y\right)\)

\(=\left(5x-15\right)\left(x-y\right)\)

\(=5\left(x-3\right)\left(x-y\right)\)

\(5.\)

\(2x^2+x\)

\(=2x\left(x+1\right)\)

\(6.\)

\(x^3+27\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

\(7.\)

\(2x^2-4xy+2y^2-32\)

\(=2\left(x^2-2xy+y^2-16\right)\)

\(=2\left[\left(x^2-2xy+y^2\right)-16\right]\)

\(=2\left[\left(x-y\right)^2-4^2\right]\)

\(=2\left(x-y+4\right)\left(x-y-4\right)\)

\(8.\)

\(x^3-4x-3x^2+12\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

\(9.\)

\(2x+2y+x^2-y^2\)

\(=2\left(x+y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+2\right)\)

\(10.\)

\(x^2y-2xy+y\)

\(=y\left(x^2-2x+1\right)\)

\(=y\left(x-1\right)^2\)

\(11.\)

\(y^2+2y\)

\(=y\left(y+2\right)\)

\(12.\)

\(y^2-x^2-6y-6x\)

\(=\left(y-x\right)\left(y+x\right)-6\left(y+x\right)\)

\(=\left(y+x\right)\left(y-x-6\right)\)

\(13.\)

\(x^3-3x\)

\(=x\left(x^2-3\right)\)

\(=x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)

\(14.\)

\(2x-xy+2z-yz\)

\(=x\left(2-y\right)+z\left(2-y\right)\)

\(=\left(2-y\right)\left(x+z\right)\)

Xong

4 tháng 7 2018

cảm ơn nhiều lắm

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

1)

ĐK: \(x,y\neq 0\); \(x+y\neq 0\)

\(\frac{x^2-y^2}{6x^2y^2}: \frac{x+y}{12xy}\)

\(=\frac{x^2-y^2}{6x^2y^2}. \frac{12xy}{x+y}=\frac{(x-y)(x+y).12xy}{6x^2y^2(x+y)}=\frac{2(x-y)}{xy}\)

2) ĐK: \(x\neq \frac{\pm 1}{2}; 0; 1\)

\(\frac{5x}{2x+1}: \frac{3x(x-1)}{4x^2-1}=\frac{5x}{2x+1}.\frac{4x^2-1}{3x(x-1)}\)

\(=\frac{5x(2x-1)(2x+1)}{(2x+1).3x(x-1)}=\frac{5(2x-1)}{3(x-1)}\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

3) ĐK: \(x\neq \frac{\pm 1}{2}; 0\)

\(\left(\frac{2x-1}{2x+1}-\frac{2x-1}{2x+1}\right): \frac{4x}{10x-5}=0: \frac{4x}{10x-5}=0\)

4) ĐK: \(x\neq \frac{\pm 1}{3}\)

\(\frac{2}{9x^2+6x+1}-\frac{3x}{9x^2-1}=\frac{2}{(3x+1)^2}-\frac{3x}{(3x-1)(3x+1)}\)

\(=\frac{2(3x-1)}{(3x+1)^2(3x-1)}-\frac{3x(3x+1)}{(3x-1)(3x+1)^2}\)

\(=\frac{6x-2-9x^2-3x}{(3x+1)^2(3x-1)}=\frac{-9x^2+3x-2}{(3x-1)(3x+1)^2}\)

5) ĐK: \(x\neq \pm 1; \frac{-7\pm \sqrt{89}}{4}\)

\(\left(\frac{5}{x^2+2x+1}+\frac{2x}{x^2-1}\right): \frac{2x^2+7x-5}{3x-3}\)

\(=\left(\frac{5}{(x+1)^2}+\frac{2x}{(x-1)(x+1)}\right). \frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{5(x-1)+2x(x+1)}{(x-1)(x+1)^2}. \frac{3(x-1)}{2x^2+7x-5}=\frac{2x^2+7x-5}{(x+1)^2(x-1)}.\frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{3}{(x+1)^2}\)

21 tháng 11 2017

1)

a) \(x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy x=2 hoặc x=-1

b) \(x\left(x-3\right)+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy x=3 hoặc x=-1

21 tháng 11 2017

1,

a, x(x-2)+x-2=0

<=> (x-2)(x+1)=0

<=> \(\left\{{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy S= \(\left\{-1;2\right\}\)

b, x(x-3)+x-3=0

<=> (x-3)(x+1)=0

<=> \(\left\{{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy S= \(\left\{-1;3\right\}\)

8 tháng 11 2018

Bài 2

\(a,x^3+2x^2+x\)

\(=x.\left(x^2+2x+1\right)\)

\(b,xy+y^2-x-y\)

\(=y.\left(x+y\right)-\left(x+y\right)\)

\(=\left(y-1\right).\left(x+y\right)\)

bài 3

\(a,3x.\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=2,x=-2\end{cases}}\)

vậy x=0,x=2 hay x=-2

\(b,xy+y^2-x-y=0\)

\(y.\left(x+y\right)-\left(x+y\right)=0\)

\(\left(y-1\right).\left(x+y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\x+y=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=-1\end{cases}}}\)

vậy x=-1, y=1