Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
x^2 -5x +y^2+xy -4y +2014
=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010
=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007
=(y+1/2x-2)^2 +3/4(x-2)^2 +2007
GTNN là 2007<=> x=2 và y=1
\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân VTV
\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)
\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)
bạn ben 10 sai rồi , phải như thế này chứ
ta có đề bài <=> \(\left(xy^2+2xy+x\right)-4y-4=-4\)
<=> \(x\left(y^2+2y+1\right)-4\left(y+1\right)=-4\)
<=> \(x\left(y+1\right)^2-4\left(y+1\right)=-4\)
<=> \(\left(y+1\right)\left(xy+x-4\right)=-4\)
mà x,y thuộc Z nên \(\left(y+1\right);\left(xy+x-4\right)\) thuộc ước của 4
cậu tự lập bảng và tự giải nhé
định đi ngủ nhưng thấy thương
^^
x+y=xy suy ra x+y-xy = 0
suy ra (x-xy)+y -1 = -1
suy ra x(1-y)-(1-y)=-1
suy ra (1-y)(x-1)=-1
suy ra (1-y) va (x-1) thuoc uoc kua -1
suy ra 1-y = 1 va x-1=-1
hoac 1-y=-1 va x-1 =1
suy ra y=0 va x bag 0
hoac y =2 va x=2
vay co 2 cap x,y thoa man la(0;0) va (2;2)