Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 a= 300.3=900
b= 204.(-8).5
= (-1632).5=(-8160)
2
A= 365.72.(-11).(-10)
B= (-714).(-232).(-72)
A= 26280.110
B= 165648.(-72)
A= 2890800
B= (-11926656) A lớn hơn B
3 a 2x-5=15
2x= 15+5
2x= 20
x = 20:2
x=10
1a) (2x - 6)(x + 2) = 0
=> \(\orbr{\begin{cases}2x-6=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=6\\x=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b) (x2 + 7)(x2 - 25) = 0
=> \(\orbr{\begin{cases}x^2+7=0\\x^2-25=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=-7\\x^2=25\end{cases}}\)
=> x ko có giá trị vì x2 \(\ge\)0 mà x2= -7
hoặc x = \(\pm\)5
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
1/ \(\left\{{}\begin{matrix}\left(x-2\right)^{72}\ge0\\\left(y+1\right)^{70}\ge0\end{matrix}\right.\)
Mà \(\left(x-2\right)^{72}+\left(y+1\right)^{70}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{72}=0\\\left(y+1\right)^{70}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy ...
2/ \(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|y-3\right|\ge0\end{matrix}\right.\)
Mà \(\left|x+1\right|+\left|y-3\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+1\right|=0\\\left|y-3\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\)
Vậy ...
3/ \(\left\{{}\begin{matrix}\left(2x-10\right)^{100}\ge0\\\left(x-y\right)^{102}\ge0\end{matrix}\right.\)
Mà \(\left(2x-10\right)^{100}+\left(x-y\right)^{102}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-10\right)^{100}=0\\\left(x-y\right)^{102}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-10=0\\x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5\end{matrix}\right.\)
Vậy ....
4/ \(\left\{{}\begin{matrix}\left|2x+8\right|\ge0\\\left|y+x\right|\ge0\end{matrix}\right.\)
Mà \(\left|2x+8\right|+\left|y+x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|2x+8\right|=0\\\left|y+x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+8=0\\y+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=8\end{matrix}\right.\)
Vậy ..