K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

Ta có : \(\left(x+y+1\right)^2=3\left(x^2+y^2+1\right)=>x^2+y^2+1+2xy+2x+2y=3\left(x^2+y^2+1\right)\)

\(=>2x^2+2y^2+2-2xy-2x-2y=0\)

\(=>\left(x-y\right)^2+x^2-2x+1+y^2-2y+1=0\)

\(=>\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\)

Mà \(\left(x-y\right)^2\ge0;\left(x-1\right)^2\ge0;\left(y-1\right)^2\ge0=>\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\)

Dấu "=" xảy ra khi \(x-y=0,x-1=0,y-1=0=>x=y=1\)

Vậy x=y=1

18 tháng 3 2023

\(A=\dfrac{2\left(x^3+y^3\right)}{\left(x^4+y^2\right)\left(x^2+y^4\right)}=2.\dfrac{\left(x^3+y^3\right)}{x^4y^4+x^2y^2+x^6+y^6}\)

\(=2.\dfrac{\left(x^3+y^3\right)}{1+1+x^6+y^6}=2.\dfrac{x^3+y^3}{x^6+y^6+2x^3y^3}=2.\dfrac{x^3+y^3}{\left(x^3+y^3\right)^2}=\dfrac{2}{x^3+y^3}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy ta có:

\(x^3+y^3+1\ge3\sqrt{xy.1}=3\)

\(\Rightarrow x^3+y^3\ge2\Rightarrow\dfrac{2}{x^3+y^3}\le1\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow A\le1\)

Dấu "=" xảy ra khi x=y=1.

Vậy MaxA là 1, đạt được khi x=y=1.

 

 

19 tháng 3 2023

Thanks!

15 tháng 1 2023

`{((a-1)x+y=a),(x+(a-1)y=2):}`

`<=>{(ax-x+y=a),(x+ay-y=2):}`

`<=>{(a(x-1)=x-y<=>a=[x-y]/[x-1]),(x+[x-y]/[x-1]-y=2):}`

`<=>x(x-1)+x-y-y(x-1)=2(x-1)`

`<=>x^2-x+x-y-xy+y=2x-2`

`<=>x^2-xy-2x+2=0`

_________________________________________

`b)x^2-xy-2x+2=0`

`<=>xy=x^2-2x+2`

`<=>y=x-2+2/x`

Thay `y=x-2+2/x` vào `6x^2-17y=7` có:

 `6x^2-17(x-2+2/x)=7`

`<=>6x^3-17x^2+34x-34-7x=0`

`<=>6x^3-12x^2-5x^2+10x+17x-34=0`

`<=>(x-2)(6x^2-5x+17)=0`

   Mà `6x^2-5x+17 > 0`

  `=>x-2=0<=>x=2`

 `=>y=2-2+2/2=1`

Thay `x=2;y=1` vào `(a-1)x+y=a` có: `(a-1).2+1=a<=>a=1`

15 tháng 1 2023

spam ?

16 tháng 3 2022

Theo bđt Cauchy schwarz dạng Engel 

\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)

Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ) 

\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)

Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)

NV
16 tháng 3 2022

\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)

\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)

4 tháng 10 2021

Bổ sung thêm \(x,y\in Z\) thì mới làm đc

\(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\\ \Leftrightarrow\left(x-2\right)\left(x+y-2\right)=3=3\cdot1=\left(-3\right)\left(-1\right)\)

Ta thấy \(x+y-2>x-2;\forall x,y\in Z\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\x+y-2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

ai giúp em với TvT, tối nay mà ko kó bài nộp là chớt em!

25 tháng 3 2021

xin nhá xin nhá =))

Áp dụng bất đẳng thức Cauchy-Schwarz và giả thiết x+y=1 ta có :

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left[2\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x=y=1/2

Vậy ...

VT
2 tháng 1 2023

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Vì \(\left(x+y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0\)

\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}=-1\)