
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Do x+y thuộc z=> x và y đều là số nguyên
Mà 1/x + 1/y thuộc Z thì x = y= 1 hoặc x=y=-1

Ta cần tìm tất cả các cặp số hữu tỉ \(\left(\right. x , y \left.\right)\) sao cho:
- \(x + y \in \mathbb{Z}\)
- \(\frac{1}{x} + \frac{1}{y} \in \mathbb{Z}\)
🔍 Bước 1: Gọi \(x , y \in \mathbb{Q}\) (số hữu tỉ), đặt:
- \(x + y = a \in \mathbb{Z}\)
- \(\frac{1}{x} + \frac{1}{y} = \frac{x + y}{x y} = \frac{a}{x y} = b \in \mathbb{Z}\)
Từ đó:
\(\frac{a}{x y} = b \Rightarrow x y = \frac{a}{b}\)
Vậy ta có hệ:
\(\left{\right. x + y = a \in \mathbb{Z} \\ x y = \frac{a}{b} \in \mathbb{Q}\)
🔍 Bước 2: Giải hệ bằng định lý Vi-ét đảo
Từ tổng và tích \(x + y = a\), \(x y = \frac{a}{b}\), ta xem \(x , y\) là nghiệm của phương trình bậc 2:
\(t^{2} - a t + \frac{a}{b} = 0\)
Phương trình này có nghiệm hữu tỉ khi:
- Hệ số \(a \in \mathbb{Z}\), \(\frac{a}{b} \in \mathbb{Q}\)
- Điều kiện cần là phân biệt và hữu tỉ, tức là:
\(\Delta = a^{2} - 4 \cdot \frac{a}{b} = a^{2} - \frac{4 a}{b} \in \mathbb{Q}\)
→ Ta muốn nghiệm là hữu tỉ, nên căn thức phải là số hữu tỉ, tức:
\(a^{2} - \frac{4 a}{b} \&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{b} \overset{ˋ}{\imath} \text{nh}\&\text{nbsp};\text{ph}ưo\text{ng}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp};\text{m}ộ\text{t}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{h}ữ\text{u}\&\text{nbsp};\text{t}ỉ\)
Để đơn giản, ta chọn các giá trị nhỏ để tìm cặp cụ thể.
🔍 Bước 3: Thử giá trị cụ thể
Ví dụ: chọn \(a = 2\), \(b = 1\)
→ \(x + y = 2\), \(x y = \frac{2}{1} = 2\)
Giải phương trình:
\(t^{2} - 2 t + 2 = 0 \Rightarrow \Delta = 4 - 8 = - 4 \Rightarrow \text{v} \hat{\text{o}} \&\text{nbsp};\text{nghi}ệ\text{m}\&\text{nbsp};(\text{kh} \hat{\text{o}} \text{ng}\&\text{nbsp};\text{ph}ả\text{i}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{h}ữ\text{u}\&\text{nbsp};\text{t}ỉ)\)
Thử \(a = 2\), \(b = 2 \Rightarrow x y = 1\)
Phương trình: \(t^{2} - 2 t + 1 = 0 \Rightarrow \left(\right. t - 1 \left.\right)^{2} = 0 \Rightarrow x = y = 1\)
✅ Thỏa mãn:
- \(x + y = 2 \in \mathbb{Z}\)
- \(\frac{1}{x} + \frac{1}{y} = 1 + 1 = 2 \in \mathbb{Z}\)
Vậy \(\left(\right. 1 , 1 \left.\right)\) là 1 cặp nghiệm.
✅ Kết luận tổng quát:
Với \(x , y \in \mathbb{Q}\), thỏa mãn:
\(x + y = a \in \mathbb{Z} , x y = \frac{a}{b} \&\text{nbsp};\text{v}ớ\text{i}\&\text{nbsp}; b \in \mathbb{Z}\)
Thì \(x , y\) là nghiệm của phương trình:
\(t^{2} - a t + \frac{a}{b} = 0\)
Muốn \(x , y \in \mathbb{Q}\) thì phương trình trên phải có nghiệm hữu tỉ. Do đó:
✅ Tập hợp nghiệm là các cặp số hữu tỉ \(\left(\right. x , y \left.\right)\) sao cho:
- \(x + y \in \mathbb{Z}\)
- \(x y \in \mathbb{Q}\)
- Và \(x , y\) là nghiệm hữu tỉ của phương trình \(t^{2} - \left(\right. x + y \left.\right) t + x y = 0\)

a) Ta có :
a/b+c< 2a/(a+b+c)
b/(c+a)<2b/(a+b+c)
c/(a+b)<2c/(a+b+c)
=> a/(b+c)+b/(c+a)+c/(a+b)<(2a+2b+2c)/(a+b+c)=2
Vậy...

Theo đề bài,đặt \(x+y=k\inℤ\) (1)
\(\frac{1}{x}+\frac{1}{y}=\left(x+y\right).\frac{1}{xy}=k.\frac{1}{xy}\)
Do k nguyên (theo (1)) nên để \(\frac{1}{x}+\frac{1}{y}\) nguyên thì \(\frac{1}{xy}\) nguyên
Nên \(xy\inƯ\left(1\right)=\left\{1;-1\right\}\)
Suy ra \(\left(x;y\right)=\left(1;1\right),\left(-1;-1\right),\left(1;-1\right),\left(-1;1\right)\)
Đúng không ta?
ơ,t sai rồi=( nếu làm như t sẽ bị thiếu nghiệm,chẵn hạn x =y = 2 hoặc x = 2 ; y = -2=.Ai có cách khác giúp với ạ!