K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

Có 2 TH

\(TH1:3x>y\)

\(\Rightarrow xy+3x-y=6\)

\(\Rightarrow x\left(y+3\right)-y-3=6-3=3\)

\(\Rightarrow\left(x-1\right)\left(y+3\right)=3\)

Ta có bảng sau :

x-113-1-3
y+331-3-1
x240-2
y0-2-6-4

Vậy có các cặp (x;y)=(2;0);(4;-2);(0;-6);(-2;-4)

\(TH2:3x< y\)

\(\Rightarrow xy+y-3x=6\)

\(\Rightarrow x\left(y-3\right)+y=6\)

\(\Rightarrow\left(x+1\right)\left(y-3\right)=3\)

Ta có bảng sau :

x+113-1-3
y-331-3-1
x02-2-4
y6402

Vậy ta có các cặp (x;y)=(0;6);(2;4);(-2;0);(-4;2)

30 tháng 6 2018

\(TH1:x\ge\frac{y}{3}\) PT có dạng : \(xy+3x-y=6\)

\(\Leftrightarrow x\left(y+3\right)-\left(y+3\right)=3\Leftrightarrow\left(x-1\right)\left(y+3\right)=3\)

Lập bảng hoặc xét từng giá trị ta được \(\left(x;y\right)=\left\{\left(2;0\right);\left(0;-6\right);\left(4;-2\right)\right\}\)

\(TH2:x< \frac{y}{3}\) Tương tự

23 tháng 3 2018

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

23 tháng 3 2018

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
24 tháng 10 2016

thiếu sự kiện nha bn 

10 tháng 1 2017

thieu su kien

22 tháng 12 2022

=>x(y-3)+y-3=2

=>(x+1)(y-3)=2

\(\Leftrightarrow\left(x+1;y-3\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;5\right);\left(1;4\right);\left(-2;1\right);\left(-3;2\right)\right\}\)

23 tháng 10 2016

a)    x=4

b)     chịu 

hehe k nha

3 tháng 5 2017
a,x=1 b,x=3,y=9
29 tháng 5 2017

TH1: \(x\le1\)

pt <=> 1-x+3-x=4 <=> 4-2x=4 <=> 2x=0 <=> x=0 (tmđk)

TH2: \(1< x\le3\)

pt <=> x-1+3-x=4 <=> 2=4 vô lý!

TH3: x > 3

pt <=> x-1+x-3=4 <=> 2x-4=4 <=> 2x=8 <=> x=4 (đpcm)

Vậy x=0 và x=4

25 tháng 1 2022

\(xy+3x-y=6\\ \Rightarrow x\left(y+3\right)-y-3=3\\ \Rightarrow x\left(y+3\right)-\left(y+3\right)=3\\ \Rightarrow\left(x-1\right)\left(y+3\right)=3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,y+3\in Z\\x-1,y+3\inƯ\left(3\right)\end{matrix}\right.\)

Ta có bảng:

x-1-1-313
y+3-3-131
x0-224
y-6-40-2

Vậy \(\left(x,y\right)\in\left\{\left(0;-6\right);\left(-2;-;\right);\left(2;0\right);\left(4;-2\right)\right\}\)

 

25 tháng 1 2022

\(xy+3x-y=6\)

\(x\left(y+3\right)-\left(y+3\right)=3\)

\(\left(x-1\right)\left(y+3\right)=3\)

Đến đây em tự xét các trường hợp nha

26 tháng 10 2015

vào câu hỏi tương tự nhé bạn