K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

Để ( x + y )2006 + 2007.| y - 1 | = 0 <=> ( x + y )2006 và 2007.| y - 1 | là hai số đối nhau

Nhưng ( x + y )2006 có số mũ chẵn => số hạng này là số nguyên dương ( 1 )

           2007.| y - 1 | , ta thấy | y - 1 | ≥ 0 và 2007 là số dương => 2007.| y - 1 | là số dương ( 2 )

Từ ( 1 ) và ( 2 ) ta suy ra : ( x + y )^2006 + 2007.| y - 1 | là số dương

Vậy ( x + y )^2006 và 2007.| y - 1 | không đối nhau

Ta chỉ còn trường hợp ( x + y )^2006 = 0 và 2007.| y - 1 | = 0

=> x - 1 = 0 và x + y = 0

=> y = 1 và x = - 1

6 tháng 3 2016

Ta thấy | x - 3y |2007 và | y + 4 |2008 luôn luôn bé hơn hoặc bằng 0 ( 1 )

Từ 1 ta suy ra 2 số hạng này không thể đối nhau

Chỉ còn trường hợp | x - 3y |2007 = 0 và | y + 4 |2008 = 0

=> x - 3y = 0 và y + 4 = 0 => y = - 4

Thay y = - 4 vào đẳng thức , ta được : x - 4.3 = 0 => x = 12

Vậy x = 12 ; y = - 4

21 tháng 8 2016

Ta có: \(2006^x=2005^y+2004^z>1\)

\(\Rightarrow x\ge1\)

Vì \(2006^x\) là số chẵn, \(2005^y\) là số lẻ 

nên \(2004^z\) là số lẻ

\(\Rightarrow z=0\)

Lúc đó, ta có phương trình: \(2006^x=2005^y+1\)

Lại có: \(\hept{\begin{cases}2005\equiv1\left(mod4\right)\Rightarrow2005^y+1\equiv2\left(mod4\right)♣\\2006=4m+2\Rightarrow2006^x=4k+2^x\end{cases}}\) 

Với \(x\ge2\) thì \(2006^x\) chia hết cho 4, mâu thuẫn với ♣.

      Vậy \(x=y=1;z=0\)

21 tháng 8 2016

Có 1 trường hợp là \(x=1;y=1;z=0\)

16 tháng 5 2016

Có 1 trường hợp là : x = 1 ; y = 1 ; z = 0 

16 tháng 5 2016

không có  trường hợp nào  

22 tháng 11 2017

 Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố 

Vậy x chỉ là số chẵn mà nguyên tố => x= 2 

Với y=2 => z= 5 thỏa đk đề bài 

Nếu y>2 => y lẻ (vì y nguyên tố) 

=> y =2k +1 
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m 

Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3 
=>z chia hết cho 3 không thỏa đk 

Vậy x=y=2; z= 5 là duy nhất 

3 tháng 11 2017

x = 2 

y = 2

z = 5

29 tháng 10 2017

 Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố 

Vậy x chỉ là số chẵn mà nguyên tố => x= 2 

Với y=2 => z= 5 thỏa đk đề bài 

Nếu y>2 => y lẻ (vì y nguyên tố) 

=> y =2k +1 
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m 

Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3 
=>z chia hết cho 3 không thỏa đk 

Vậy x=y=2; z= 5 là duy nhất 

10 tháng 3 2018

Trả lời

 Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố 

Vậy x chỉ là số chẵn mà nguyên tố => x= 2 

Với y=2 => z= 5 thỏa đk đề bài 

Nếu y>2 => y lẻ (vì y nguyên tố) 

=> y =2k +1 
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m 

Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3 
=>z chia hết cho 3 không thỏa đk 

Vậy x=y=2; z= 5 là duy nhất 

Với x=2; y=5 thì 2^5 + 1 =33 đâu phải số nguyên tố.... 



 

19 tháng 10 2018

a) Xét x(y+3) +y =14

     => x(y+3) +(y+3) = 14+3

     => (y+3)(x+1)=17

     => 17 chia hết cho y+3 (đpcm)

b) Vì  (y+3)(x+1)=17

          => y+3 và x+1 là ước của 17

                 Mà x,y là số tự nhiên

          => y+3 và x+1 thuộc tập hợp 1 , 17

Ta có bảng sau:

x+1117
x016
y+3171
y14-2

Mà x,y là số tự nhiên => x=0 thì y=14

Vậy x=0 thì y=14
 

1 tháng 5 2019

Ta có: \(\hept{\begin{cases}\left(2x+1\right)^{2008}\ge0\forall x\\|3y-1|^{2007}\ge0\forall y\end{cases}}\)\(\Rightarrow\left(2x+1\right)^{2008}+|3y-1|^{2007}\ge0\forall x,y\)

Do đó \(\left(2x+1\right)^{2008}+|3y-1|^{2007}=0\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=0\\3y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{3}\end{cases}}}\)

Vậy \(\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{3}\end{cases}}\)

1 tháng 5 2019

ko hiểu thì hỏi nhá