Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Vì \(\left|2x-27\right|^{2007}\ge0;\left(3y+10\right)^{2008}\ge0\)
\(\Rightarrow\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}\ge0\)
Mà \(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x-27\right|^{2007}=0\\\left(3y+10\right)^{2008}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-10}{3}\end{cases}}}\)
2,
TH1: \(x\ge\frac{3}{5}\)
<=> 2(5x-3)-2x=14
<=> 10x-6-2x=14
<=>8x-6=14
<=>8x=20
<=>x=5/2 (thỏa mãn)
TH2: x < 3/5
<=> 2(3-5x)-2x=14
<=>6-10x-2x=14
<=>6-12x=14
<=>12x=-8
<=>x=-2/3 (thỏa mãn)
Vậy \(x\in\left\{\frac{5}{2};\frac{-2}{3}\right\}\)
Vì mũ chẵn và GTTĐ luôn lớn hơn hoặc bằng 0
mà ... ( ghi đề bài ra )
\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\\\frac{4}{3}x+\frac{5}{2}y=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)
Vậy,.......
a: =>|x-2009|=2009-x
=>x-2009<=0
=>x<=2009
b: =>2x-1=0 và y-2/5=0 và x+y-z=0
=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10
\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)
Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)
nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)
thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)
\(\Rightarrow x-1=0\text{ và }y+3=0\)
\(\Rightarrow x=1\text{ và }y=-3\)
\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)
Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)
Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)
hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)
\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)
\(\Rightarrow x^2=9\text{ và }6y=2\)
\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)
Câu c) làm tương tự nha
để được tổng =0 thì x + 2006/2007 = 0 và 2008/2009 - y =0
vậy suy ra x + 2006/2007 = 0 ; x = -2006/2007
suy ra 2008/2009 - y = 0 ; y = 2008/2009
Vì \(\left|x+\frac{2006}{2007}\right|\ge0;\left|\frac{2008}{2009}-y\right|\ge0\)
Mà \(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)
=> \(\hept{\begin{cases}\left|x+\frac{2006}{2007}\right|=0\\\left|\frac{2008}{2009}-y\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{2006}{2007}=0\\\frac{2008}{2009}-y=0\end{cases}}\)=> \(\hept{\begin{cases}x=-\frac{2006}{2007}\\y=\frac{2008}{2009}\end{cases}}\)
a)Với mọi \(x;y\in R\) ta có: \(2017\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}\ge0\)
mà \(2007\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}\le0\)
\(\Rightarrow2007\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}=0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
b) Với mọi \(x;y\in R\) ta có: \(\left|5x+1\right|+\left|6y-8\right|\ge0\)
mà \(\left|5x+1\right|+\left|6y-8\right|\le0\)
\(\Rightarrow\left|5x+1\right|+\left|6y-8\right|=0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=\dfrac{4}{3}\end{matrix}\right.\)