Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-3x+1=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{5}{4}\)
\(=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)
Vậy GTNN của A là \(\frac{-5}{4}\)\(\Leftrightarrow x=\frac{3}{2}\)
\(C=10x-x^2+2=-\left(x^2-10x-2\right)\)
\(=-\left(x^2-10x+25-27\right)=-\left[\left(x-5\right)^2-27\right]\)
\(=-\left(x-5\right)^2+27\le27\)
Vậy \(C_{max}=27\Leftrightarrow x=5\)
Ta có: M = \(8x^2+y^2-4xy-16x+17\)
<=> M = \(\left(4x^2-4xy+y^2\right)+\left(4x^2-16x+16\right)+1\)
<=> M = \(\left(2x-y\right)^2+\left(2x-4\right)^2+1\)
Vì \(\left\{{}\begin{matrix}\left(2x-y\right)^2\ge0\\\left(2x-4\right)^2\ge0\end{matrix}\right.\) => M \(\ge\) 1
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}2x-y=0\\2x-4=0\end{matrix}\right.\) <=> x = 2; y = 4
=> GTNN của M = 1 khi x = 2; y= 4
a, x2+5y2+2y-4xy-3=0
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)
\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)
lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)
Vậy.................
a) \(x^2+5y^2+2y-4xy-3=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta thấy : \(4=0+4\) là tổng hai số chính phương
Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)
Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.
Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)
\(\Leftrightarrow x=-6\)
Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.
P/s : Không chắc lắm ....
\(C=4x^2-4xy+y^2+4x^2-16x+16+1\)
\(=\left(2x-y\right)^2+(2x-4)^2+1\ge1\forall x;y\in R\)
Dấu "=" xảy ra<=> 2x-y=0 và 2x-4=0
<=>2x-y=0 và x=2 <=>y=4 và x=
Vậy....
\(B=3x^2-12x+16\)
\(=x^2-12x+36+2x^2-20\)
\(=\left(x-6\right)^2+2x^2-20\ge-20\forall x\in R\)
Dấu "=" xảy ra <=> \(\left(x-6\right)^2=0\)và \(2x^2=0\)
<=>x1 =6 và x2 =0
Vậy....
1 Viết dưới dạng tich
a)\(49x^2y^4-36z^2t^2\)
\(=\left(7xy^2\right)^2-\left(6zt\right)^2\)
\(=\left(7xy^2-6zt\right)\left(7xy^2+6zt\right)\)
b)\(4-12xy^2+9x^2y^4\)
\(=2^2-2.2.3xy^2+\left(3xy^2\right)^2\)
=\(\left(2-3xy^2\right)^2\)
1/
a) 49x2y4 - 36z2t2 = (7xy2)2 - (6zt)2 = (7xy2 - 6zt)(7xy2 + 6zt)
b) 4 - 12xy2 + 9x2y4 = 22 - 2.2.3xy2 + (3xy2)2 = (2 - 3xy2)2
a) A = x2 - 6x + 13 = x2 - 2.x.3 + 33 +4 = (x-3)2 + 4 >= 4 suy ra minA=4
mấy câu kia giải tương tự
ghi rõ hơn đc ko
Tìm x y sao cho bt sau đạt giá trị nhỏ nhất
M=8x2+yy2—4xy—16x+17