K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

ghi rõ hơn đc ko

21 tháng 10 2016

Tìm x y sao cho bt sau đạt giá trị nhỏ nhất

M=8x2+yy2—4xy—16x+17

9 tháng 9 2019

\(A=x^2-3x+1=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{5}{4}\)

\(=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)

Vậy GTNN của A là \(\frac{-5}{4}\)\(\Leftrightarrow x=\frac{3}{2}\)

9 tháng 9 2019

\(C=10x-x^2+2=-\left(x^2-10x-2\right)\)

\(=-\left(x^2-10x+25-27\right)=-\left[\left(x-5\right)^2-27\right]\)

\(=-\left(x-5\right)^2+27\le27\)

Vậy \(C_{max}=27\Leftrightarrow x=5\)

30 tháng 5 2017

Ta có: M = \(8x^2+y^2-4xy-16x+17\)

<=> M = \(\left(4x^2-4xy+y^2\right)+\left(4x^2-16x+16\right)+1\)

<=> M = \(\left(2x-y\right)^2+\left(2x-4\right)^2+1\)

\(\left\{{}\begin{matrix}\left(2x-y\right)^2\ge0\\\left(2x-4\right)^2\ge0\end{matrix}\right.\) => M \(\ge\) 1

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}2x-y=0\\2x-4=0\end{matrix}\right.\) <=> x = 2; y = 4

=> GTNN của M = 1 khi x = 2; y= 4

a, x2+5y2+2y-4xy-3=0

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)

\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)

lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)

Vậy.................

5 tháng 3 2020

a) \(x^2+5y^2+2y-4xy-3=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta thấy : \(4=0+4\) là tổng hai số chính phương

Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)

Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.

Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)

\(\Leftrightarrow x=-6\)

Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.

P/s : Không chắc lắm ....

8 tháng 7 2019

\(C=4x^2-4xy+y^2+4x^2-16x+16+1\)

    \(=\left(2x-y\right)^2+(2x-4)^2+1\ge1\forall x;y\in R\)

Dấu "=" xảy ra<=> 2x-y=0  và   2x-4=0

                   <=>2x-y=0 và  x=2   <=>y=4 và x=

Vậy....

\(B=3x^2-12x+16\) 

   \(=x^2-12x+36+2x^2-20\) 

   \(=\left(x-6\right)^2+2x^2-20\ge-20\forall x\in R\) 

Dấu "=" xảy ra <=> \(\left(x-6\right)^2=0\)và \(2x^2=0\) 

                    <=>x1 =6 và x2 =0

Vậy....

              

8 tháng 9 2019

1 Viết dưới dạng tich

a)\(49x^2y^4-36z^2t^2\)

\(=\left(7xy^2\right)^2-\left(6zt\right)^2\)

\(=\left(7xy^2-6zt\right)\left(7xy^2+6zt\right)\)

b)\(4-12xy^2+9x^2y^4\)

\(=2^2-2.2.3xy^2+\left(3xy^2\right)^2\)

=\(\left(2-3xy^2\right)^2\)

8 tháng 9 2019

1/

a) 49x2y4 - 36z2t2 = (7xy2)2 - (6zt)2 = (7xy2 - 6zt)(7xy2 + 6zt)

b) 4 - 12xy2 + 9x2y4 = 22 - 2.2.3xy2 + (3xy2)2 = (2 - 3xy2)2

7 tháng 12 2015

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự