\(x^2+y^2+5x^2y^2+60=37xy\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 4 2019

\(4\left(x^2-2xy+y^2\right)+5\left(4x^2y^2-28xy+49\right)=5\)

\(\Leftrightarrow4\left(x-y\right)^2+5\left(2xy-7\right)^2=5\)

- Nếu \(2xy-7\ne0\Rightarrow\left(2xy-7\right)^2>1\Rightarrow5\left(2xy-7\right)^2>5\)

\(\Rightarrow4\left(x-y\right)^2< 0\) (vô lý)

Vậy \(2xy-7=0\)

Mà do x, y nguyên nên \(2xy\) chẵn \(\Rightarrow2xy-7\ne0\) \(\forall x;y\in Z\)

Vậy pt ko có nghiệm nguyên

14 tháng 10 2016

ai giải giúp mình với,minh se k nguoi do

14 tháng 10 2016

xem như pt bậc 2 ẩn x 
x^2 + y^2 + 5(xy)^2 + 60 =37xy 
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0 
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2) 
= -20y^4+165y^2- 240 >=0 
=> 1 < y^2 <7 => y= +-2 
với y= 2 => x = 2 thỏa mãn 
với y =-2 => x =- 2 thỏa mãn

xong nha

4 tháng 4 2018

Trả lời

Xem như phương trình bậc 2 ẩn x

\(x^2+y^2+5\left(xy\right)^2+60=37xy\)

\(\Leftrightarrow\left(1+5y^2\right)\cdot x^2-37xy+60+y^2=0\)

Denta=\(37^2\cdot y^2-4\cdot\left(60+y^2\right)\cdot\left(1+5y^2\right)\)

\(=-20y^4+165y^2-240=0\)

\(\Rightarrow1< y^2< \pm2\)

Với \(y=2\Rightarrow x=2\)(thỏa mãn)

Với \(y=-2\Rightarrow x=-2\)(thỏa mãn)

Vậy....

7 tháng 4 2018

mk ko hieu doan denta =...

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

21 tháng 3 2016

em như pt bậc 2 ẩn x 
x^2 + y^2 + 5(xy)^2 + 60 =37xy 
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0 
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2) 
= -20y^4+165y^2- 240 >=0 
=> 1 < y^2 <7 => y= +-2 
với y= 2 => x = 2 thỏa mãn 
với y =-2 => x =- 2 thỏa mãn

21 tháng 3 2016

xem ko phai em minh viet au qua

13 tháng 4 2018

Trả lời

 xem như pt bậc 2 ẩn x 
x^2 + y^2 + 5(xy)^2 + 60 =37xy 
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0 
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2) 
= -20y^4+165y^2- 240 >=0 
=> 1 < y^2 <7 => y= +-2 
với y= 2 => x = 2 thỏa mãn 
với y =-2 => x =- 2 thỏa mãn

13 tháng 4 2018

giải như sau:@_@

 xem như pt bậc 2 ẩn x 
x^2 + y^2 + 5(xy)^2 + 60 =37xy 
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0 
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2) 
= -20y^4+165y^2- 240 >=0 
=> 1 < y^2 <7 => y= +-2 
với y= 2 => x = 2 thỏa mãn 
với y =-2 => x =- 2 thỏa mãn

24 tháng 5 2020

Bài 2:

\(x^3+y^3+z^3-3xyz=0\)

<=> \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

<=> \(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{matrix}\right.\)

Ta có \(a^2+b^2+c^2\ge ab+bc+ca\)

Áp dụng => \(x^2+y^2+z^2\ge xy+yz+zx\)

Dấu "=" xảy ra <=> x = y = z (vô lí do x,y,z đôi 1 khác nhau)

=> x + y + z =0

=> \(\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\z+x=-y\end{matrix}\right.\)

Thay vào P = -16 - 3 + 2019 = 2000

Bài 1:

Ta có: \(x^2+y^2+5x^2y^2+60=37xy\)

\(\Leftrightarrow x^2+y^2-2xy+60=35xy-5x^2y^2\)

\(\Leftrightarrow\left(x-y\right)^2+60=5\left(7xy-x^2y^2\right)\)

\(\Leftrightarrow\left(x-y\right)^2+60=\frac{5\cdot49}{4}-\frac{5}{4}\left(2xy-7\right)^2\)

\(\Leftrightarrow\left[2\left(x-y\right)\right]^2+5\left(2xy-7\right)^2=5\cdot49-60\cdot4=5\)

\(x,y\in Z\)\(2xy-7\ne0\); \(5\left(2xy-7\right)^2\ge5\)

nên \(\left[2\left(x-y\right)\right]^2=0\)

\(\Leftrightarrow x=y\)

|(2xy-7)|=1

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-7=-1\\2x^2-7=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2=6\\2x^2=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=3\left(loại\right)\\x^2=4\end{matrix}\right.\)

\(\Leftrightarrow x=\pm2\)

Vậy: (x,y)=(\(\pm2;\pm2\))