K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MQ
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TL
23 tháng 3 2018
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
TT
0
EG
0
SD
2
Lời giải:
$\frac{1}{x}+\frac{1}{3}=\frac{1}{y}$
$\Rightarrow \frac{x+3}{3x}=\frac{1}{y}$
$\Rightarrow y(x+3)=3x$
$\Rightarrow y(x+3)-3(x+3)=-9$
$\Rightarrow (x+3)(y-3)=-9$
Do $x,y$ là số nguyên nên $x+3, y-3$ cũng nguyên. Mà $(x+3)(y-3)=-9$ nên xét các TH sau:
TH1: $x+3=1, y-3=-9\Rightarrow x=-2; y=-6$
TH2: $x+3=-1, y-3=9\Rightarrow x=-4; y=12$
TH3: $x+3=3, y-3=-3\Rightarrow x=0$ (loại)
TH4: $x+3=-3, y-3=3\Rightarrow x=-6; y=6$
TH5: $x+3=9, y-3=-1\Rightarrow x=6; y=2$
TH6: $x+3=-9, y-3=1\Rightarrow x=-12; y=4$