Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=9/xy+17/(x^2+y^2)=17/(x^2+y^2)+17/2xy+1/2xy=17.(1/x^2+y^2 + 1/2xy) + 1/2xy
Áp dụng bđt cauchy dạng 1/a+1/b >/ 4/(a+b) và ab </ [(a+b)/2]^2
Ta có M >/ 17.4/16^2 + 1/2.8^2 = 35/128=>minM=35/128
Đẳng thức xảy ra <=> x=y=8
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)
\(=\left(9-2xy\right)^2-2x^2y^2=81-36xy+4x^2y^2-2x^2y^2=81-36xy+2x^2y^2=17\)
<=>\(81-36xy+2x^2y^2-17=0\)<=>\(64-36xy+2x^2y^2=0\)
<=>\(2\left(x^2y^2-18xy+32\right)=0\)<=>\(2\left[\left(xy-9\right)^2-49\right]=0\)
<=>\(\left(xy-9\right)^2-49=0\Leftrightarrow\left(xy-9\right)^2=49\)
<=>\(\orbr{\begin{cases}xy-9=-7\\xy-9=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}xy=2\\xy=16\end{cases}}\)
+) Với xy=2
Có: \(x+y=3\Leftrightarrow x=3-y\Leftrightarrow xy=3y-y^2=2\Leftrightarrow3y-y^2-2=0\)
\(\Leftrightarrow y^2-3y+2=0\Leftrightarrow\left(y-2\right)\left(y-1\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\)
<=> Với y=2 thì x=1 hoặc y=1 thì x=2
+) Với xy=16
\(xy=3y-y^2=16\Leftrightarrow3y-y^2-16=0\Leftrightarrow y^2-3y+16=0\)
<=>\(\left(y-\frac{3}{2}\right)^2+\frac{55}{4}=0\Leftrightarrow\left(y-\frac{3}{2}\right)^2=-\frac{55}{4}\)
pt vô nghiệm vì \(\left(y-\frac{3}{2}\right)^2\ge0\)
Vậy ...............................
a) \(y^2=-2\left(x^6-x^3y-32\right)\Leftrightarrow2x^6-2x^3y+y^2=64\Leftrightarrow4x^6-4x^3y+2y^2=128\)
\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)
# Chứng minh và áp dụng bất đẳng thức sau \(A^2+B^2\ge\frac{\left(A+B\right)^2}{2}\), ta có
\(\left(2x^3-y\right)^2+y^2\ge\frac{\left(2x^3-y+y\right)^2}{2}=2x^6\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\Leftrightarrow-2\le x\le2\)
Mà x nguyên (gt) nên x có các giá trị sau -2;-1;0;1;2
Thế các giá trị của x vào phương trình và giải tìm y ( lưu ý xét điều kiện nguyên của y)
c) \(x^2-x-6=-y^2\Leftrightarrow\left(x-3\right)\left(x+2\right)=-y^2\)
mà \(y^2\ge0\Leftrightarrow-y^2\le0\)nên \(\left(x-3\right)\left(x+2\right)\le0\Leftrightarrow\hept{\begin{cases}x-3\le0\\x+2\ge0\end{cases}}\)( do x-3 < x+2 )
\(\Leftrightarrow-2\le x\le3\)
mà x nguyên (gt) nên \(x\in\left\{-2;-1;0;1;2;3\right\}\)
Thế các giá trị x vào phương trình và giải tìm y ( lưu ý xét điều kiện nguyên của y )
(x,y)=(0,19); (19,0)