Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL
Bài 1: a) x E { 2 ; 4 ; 32 }
b) x E { 0 ; 2 }
c) x E { 18 ; 43 ; 68 }
d) x E { 0 }
e) x E { 0 ; 1; 2; 6; 9 ; 16 ; 51}
Bài 2: Số tổ = ƯCLN ( 24 , 108 ) = 12 (tổ)
Số nhóm = ( 18 , 24 ) = 6 (nhóm) => Mỗi nhóm có 3 nam 4 nữ
Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!
Bài toán này nhìn đầu tiên có vẻ rắc rối nhưng thực ra rất đơn giản. Ta biết rằng x + 8 và y + 2012 chia hết cho 6, và biểu thức 4^3 + x + y có thể viết lại dưới dạng 64 + x + y. Vì x + 8 chia hết cho 6, nên x chia hết cho 6 - 8, tức là -2. Vì y + 2012 chia hết cho 6, nên y chia hết cho 6 - 2012, tức là -2006. Vậy x + y = -2 - 2006 = -2008. Ta thấy rằng 64 + x + y = 64 - 2008 = -1944. Tuy nhiên, -1944 không chia hết cho 6, vì nó không chia hết cho 2. Vậy ta suy ra rằng 4^3 + x + y không chia hết cho 6. Do đó, bài toán đã được chứng minh.
Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.
Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.
1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
- Ta thấy y=0; 1 không phải là nghiệm của bài toán.
- Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.
- Với y>=3 thì:
- Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)
\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)
- Thay vào (1) ta có: \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)
\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)
\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)
\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)
\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)
Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.
- Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\)
Bạn Lê Chí Cường giải thiếu kết quả: x=y=1
x=2, y=3
x=3, y=2