K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

HU HU! EM MỚI HỌC LỚP 6 THỐI!!!!

23 tháng 4 2017

\(x^2=y^2+2y+1+12\)

\(x^2=\left(y+1\right)^2+12\)

\(x^2-\left(y+1\right)^2=12\)

\(\left(x-y-1\right)\left(x+y+1\right)=12\)

xét các trường hợp

19 tháng 12 2016

x2 = y2 + 2y + 13 = (y + 1)2 + 12

=> x = 4 ; y - 1 = 2

=> x = 4 ; y = 1

28 tháng 7 2020

onii:))

\(x^2=y^2+2y+13\)

\(\Leftrightarrow x^2=\left(y^2+2y+1\right)+12\)

\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)

\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)

\(\Leftrightarrow\left(x-y-1\right).\left(x+y+1\right)=12\)

do x,y nguyên dương nên \(x-y-1;x+y+1\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)

xy nguyên dương \(\Rightarrow x+y+1>x-y-1\)

từ đó ta có bẳng sau

x+y+11264
x-y-1123
x13/2(loại)4(TM)7/2(loại)
y9/2(loại)1(TM)-1/2(loại)

vậy cặp giá trị (x;y) thỏa mãn là:x=4;y=1

1 tháng 3 2022

Có:x^2=y^2+2y+13

=>x^2=(y^2+2y+1)+12

=>x^2=(y+1)^2+12

=>x^2-(y+1)^2=12

=>(x-y-1)(x+y+1)=12

vì x, y là các số nguyên dương

=>x-y-1<x+y+1

Xét các trường hợp

TH1:x-y-1=1 và x+y+1=12

=> x-y=2 và x+y=11

=>x=6.5 và y=4.5 (Loại vì x,y là các số nguyên dương)

TH2: x-y-1=2 và x+y+1=6

=>x-y=3 và x+y=5

=>x=4 và y=3 (Thỏa mãn)

TH3:x-y-1=3 và x+y+1=4

=>x-y=4 và x+y=3(Loại vì x-y<x+y)

Vậy x=4, y=3

14 tháng 3 2017

x^2+y^2-x^2y^2-1=-1

-x^2(y^2-1)+(y^2-1)=-1 

(y^2-1)(-x^2+1)=-1 

suy ra trường hợp 1 y^2-1=1 và -x^2+1=-1 ko thỏa do nghiệm ko nguyên 

         trường hợp 2 y^2-1=-1 và -x^2+1=1 

                            y=0,x=0 

NV
19 tháng 3 2021

Bạn tham khảo:

Tìm nghiệm nguyên dương của phương trình x2+2y2+2xy-4x-3y-2=0 - Hoc24

28 tháng 5 2018

Ta có: x^2=(y^2+2y+1)+12=(y+1)^2 +12

suy ra x^2-(y+1)^2=(x-y-1)(x+y+1)=12

Do x, y là số nguyên nên ta có bảng sau:

x-y-1           1            2              3    

x+y+1        12          6              4           (do x+y+1 lớn hơn x-y-1)

Đến đây thì bạn tự làm nhé.