Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
Bài 1 bạn viết sai đề
2/Giải
\(\frac{x^2+y^2}{2^2+3^2}=\frac{52}{4+9}=\frac{52}{13}=4\)
Vậy:\(\frac{x}{2}=4\cdot2=8\)
\(\frac{y}{3}=4\cdot3=12\)
Vậy \(x=8\)
\(y=12\)
Nhớ k cho mình nha!
1/\(\frac{x}{3}=\frac{y}{16}\)và\(x-y=35\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{16}=\frac{x-y}{3-16}=\frac{35}{-13}\)
\(\frac{x}{3}=\frac{35}{-13}\)=>\(\frac{-105}{13}\)
\(\frac{y}{16}=\frac{35}{-13}\)=>\(\frac{-560}{13}\)
2/
\(\frac{x}{2}=\frac{y}{3}\)và\(x^2+y^2=52\)
THEO ĐỀ BÀI TA CÓ : \(\frac{x}{2}=\frac{x^2}{2^2}=\frac{x^2}{4}\)
\(\frac{y}{3}=\frac{y^2}{3^2}=\frac{y^2}{9}\)
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}\)\(=4\)
\(\frac{x}{2}=4\)=>\(x=8\)
\(\frac{y}{3}=4\)=>\(y=12\)
HỌC TỐT ^^
a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)
=> x = 4.3 = 12
y = 4.4 = 16
b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
=> x = (-1).2 = -2
y = (-1)(-5) = 5
c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)
=> x = 8
y =12
z = 15
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10
\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
* \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
* \(\frac{y}{12}=2\Rightarrow y=2.12=24\)
* \(\frac{z}{5}=2\Rightarrow z=2.5=10\)
Vậy...
Ý mk nhầm chút xíu nhé! Cko sorry!
* \(\frac{z}{15}=2\Rightarrow z=2.15=30\)
... :( Xl
ta có \(\frac{1}{x}+\frac{1}{y}=2\)
=>\(\frac{x+y}{xy}=2\)
=> \(x+y=2xy\)
=> \(x+y-2xy=0\)
=> \(x\left(1-2y\right)+y=0\)
=> \(2x\left(1-2y\right)+2y=0\)
=> \(2x\left(1-2y\right)+2y-1=-1\)
=> \(\left(2x-1\right)\left(1-2y\right)=-1\)
=> \(\left(2x-1\right)\left(2y-1\right)=1\)
Vì x,y là số nguyêm nên 2x-1,2y-1 là ước của 1 nên ta có bảng sau
2x-1 | 1 | -1 |
2y-1 | 1 | -1 |
x | 1 | 0 |
y | 1 | 0 |
kết hợp vơi đk \(x,y\ne0\)=> x=1,y=1
Ta có :
\(\frac{1}{x}+\frac{1}{y}=2\)
\(\Rightarrow\frac{y}{xy}+\frac{x}{xy}=2\)
\(\Rightarrow\frac{y+x}{xy}=2\)
\(\Rightarrow2xy=y+x\)
\(\Rightarrow2xy-y-x=0\)
\(\Rightarrow y\left(2x-1\right)-x=0\)
\(\Rightarrow y\left(2x-1\right)-\frac{1}{2}\left(2x-1\right)-\frac{1}{2}=0\)
\(\Rightarrow\left(y-\frac{1}{2}\right)\left(2x-1\right)=\frac{1}{2}\)
\(\Rightarrow\left(2y-1\right)\left(2x-1\right)=1\)
vì x,y \(\in\)Z nên \(2y-1;2x-1\)\(\in\)Ư ( 1 ) = { 1 ; -1 }
+) 2y - 1 = 1 thì y = 1 khi đó 2x - 1 = 1 => x = 1 ( chọn )
+) 2y - 1 = -1 thì y = 0 khi đó 2x - 1 = -1 thì x = 0 ( loại )
Vậy ( x ; y ) = ( 1 ; 1 )
Bài 1:
a) \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}\ge0\left(\forall x\right)\\\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(x-\frac{2}{5}\right)^{2010}+\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall x,y\right)\)
Kết hợp với đề bài, dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}=0\\\left(y+\frac{3}{7}\right)^{468}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{7}\end{cases}}\)
b) \(\hept{\begin{cases}\left(x+0,7\right)^{84}\ge0\left(\forall x\right)\\\left(y-6,3\right)^{262}\ge0\left(\forall y\right)\end{cases}\Rightarrow}\left(x+0,7\right)^{84}+\left(y-6,3\right)^{262}\ge0\left(\forall x,y\right)\)
Kết hợp với đề bài, dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x+0,7\right)^{84}=0\\\left(y-6,3\right)^{262}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,7\\y=6,3\end{cases}}\)
c) \(\hept{\begin{cases}\left(x-5\right)^{88}\ge0\left(\forall x\right)\\\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\end{cases}\Rightarrow}\left(x-5\right)^{88}+\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\)
Kết hợp với đề bài, dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-5\right)^{88}=0\\\left(x+y+3\right)^{496}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=-8\end{cases}}\)
Bài 2:
Theo giả thiết ta có thể suy ra: \(x>y\)
Ta có: \(2^x-2^y=224\)
\(\Leftrightarrow2^y\left(2^{x-y}-1\right)=224=32.7=2^5.7\)
Mà \(2^{x-y}-1\) luôn lẻ với mọi x,y nguyên
=> \(\hept{\begin{cases}2^{x-y}-1=7\\2^y=2^5\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{x-y}=8=2^3\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}\)
a) Ta có: \(\left(x-1\right)^2\ge\)0 \(\forall\)x
\(\left|y+2\right|\ge0\)\(\forall\) y
=> \(\left(x-1\right)^2+\left|y+2\right|\ge0\)\(\forall\)x,y
=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\y+2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy ...
b) Ta có: \(\frac{1}{2}-\frac{y}{3}=\frac{2}{x}\)
=> \(\frac{3-2y}{6}=\frac{2}{x}\)
=> \(x\left(3-2y\right)=12\)
=> x; 3 - 2y \(\in\)Ư(12) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12}
Do 3 - 2y là số lẽ , mà x,y \(\in\)Z
=> 3 - 2y \(\in\) {1; -1; 3; -3}
Lập bảng :
3 - 2y | 1 | -1 | 3 | -3 |
x | 12 | -12 | 4 | -4 |
y | 1 | 2 | 0 | 3 |
Vậy ...
x+(-31/12)^2=(49/12)^2-x
x+x=(49/12)^2-(-31/12)^2
tính x
từ x tìm ra y
b)x(x-y):[y(x-y)]=3/10:(-3/50)=...
=>x/y=... =>x=...;y=...
Ta có:
\(\frac{x}{2}=\frac{y}{3}.\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}\) và \(x^2+y^2=52.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x=4\left(vìx>0\right)\\\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow y=6\left(vìy>0\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;6\right).\)
Chúc bạn học tốt!