K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

y2+2xy-7x=12

=>y2+2xy-7x-12=0

<=>(x2+2xy+y2)-(y2+7y+12)=0

<=>(x+y)2=(y+3)(y+4) (1)

Ta thấy vế trái là số chính phương với mọi x,y nguyên;vế phải là tích 2 số nguyên liên tiếp nên ko phải số chính phương

=>(1) vô lý hay phương trình trên ko có nghiệm x,y nguyên.

19 tháng 8 2018

\(y^2+2xy-7x-12=0\)

\(\Leftrightarrow y^2-12+x\left(2y-7\right)=0\)

\(\Leftrightarrow4y^2-48+4x\left(2y-7\right)=0\)

\(\Leftrightarrow4y^2-49+4x\left(2y-7\right)=-1\)

\(\Leftrightarrow\left(2y-7\right)^2+4x\left(2y-7\right)=-1\)

\(\Leftrightarrow\left(2y-7\right)\left(2y+4x+7\right)=-1\)

Vì x, y nguyên nên ta có bảng sau:

2y-7 1 -1
2y+4x+7 -1 1
y 4 3
x -4

-3

Vậy cặp số nguyên (x;y) thỏa mãn đề bài là:(-4;4); (-3;3)

10 tháng 9 2017

\(y^2\)+ 2xy-7x-12=0 <=> 4\(y^2\)+8xy-28x-48=0 <=> 4\(y^2\)-49+4x(2y-7)=-1

<=> (2y-7)(2y+7+4x)=-1

=> Ta có : 2y-7= -1 và 2y+7+4x= 1

hoặc 2y-7=1 và 2y+7+4x=-1

*) 2y-7=1và 2y+7+4x=-1 *) 2y-7=-1 và 2y+7+4x=1

=> x=-4 và y=4 =>x=-3 và y=3

Vậy x=-4 và y=4 Hoặc x=-3 và y=3

7 tháng 6 2018

\(2xy-5x+7y=12\)

\(\Leftrightarrow y\left(2x+7\right)-5x=12\)

\(\Leftrightarrow y\left(2x+7\right)=12+5x\)\(\Leftrightarrow y=\frac{12+5x}{2x+7}\left(1\right)\)

Để y nguyên thì \(\frac{12+5x}{2x+7}\in Z\Rightarrow12+5x⋮2x+7\)

Ta thấy: \(2\left(12+5x\right)⋮2x+7\Rightarrow24+10x⋮2x+7\)

Lại có: \(5\left(2x+7\right)⋮2x+7\Rightarrow10x+35⋮2x+7\)

Do đó: \(10x+35-\left(24+10x\right)⋮2x+7\)\(\Rightarrow11⋮2x+7\)

=> \(2x+7\inƯ\left(11\right)\). Mà \(x\in Z\Rightarrow2x+7\in Z\Rightarrow2x+7\in\left\{1;11;-1;-11\right\}\)

\(\Rightarrow2x\in\left\{-6;4;-8;-18\right\}\)\(\Rightarrow x\in\left\{-3;2;-4;-9\right\}\)

 Thay vào (1); ta được: \(y\in\left\{-2;2;-8;3\right\}\)

Vậy các cặp nghiệm nguyên của phương trình là:

\(\left(x;y\right)\in\left\{\left(-3;-2\right);\left(2;2\right);\left(-4;-8\right);\left(-9;3\right)\right\}.\)

Ukm

It's very hard

l can't do it 

Sorry!

 
27 tháng 7 2018

a) \(x^4-x^3-7x^2+x+6=0\)

\(\Leftrightarrow x^4+2x^3-3x^3-6x^2-x^2-2x+3x+6=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x^2\left(x+2\right)-x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x^2-x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\). Làm nốt

b) \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)

\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2-6x+9+\left|y+3\right|=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)

Do \(\left(x+y\right)^2\ge0;\left(x-3\right)^2\ge0;\left|y+3\right|\ge0\forall x;y\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

c) \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)

\(\Leftrightarrow\left(2x^2+x\right)^2-2.\left(2x^2+x\right).2+4-1=0\)

\(\Leftrightarrow\left(2x^2+x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x^2+x-2=1\\2x^2+x-2=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2+x-3=0\\2x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{3}{2}=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2-\frac{25}{16}=0\\\left(x+\frac{1}{4}\right)^2-\frac{9}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2=\frac{25}{16}\\\left(x+\frac{1}{4}\right)^2=\frac{9}{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\pm\frac{5}{4}\\x+\frac{1}{4}=\pm\frac{3}{4}\end{cases}}\)

Từ đó tính đc x

d) \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)

\(\Leftrightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)=24\)

\(\Leftrightarrow\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(x^2+5x+5=a\), khi đó pt có dạng:

\(\left(a-1\right)\left(a+1\right)-24=0\Leftrightarrow a^2-1-24=0\)

\(\Leftrightarrow a^2-25=0\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2+5x+5=5\\x^2+5x+5=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+5x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\\left(x+\frac{5}{4}\right)^2=-\frac{15}{4}\left(vn\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

24 tháng 12 2022

Đối với dạng này thì em biến đổi 1 vế thành tích các đa thức còn 1 vế là số nguyên, sau đó tìm ước số nguyên, cho các đa thức bằng ước đó là tìm được .

                         2x2 + 2xy - 3x - y = 5

                ( 2x2 + 2xy ) - x - y - 2x + 1 = 6

                 2x( x + y) - ( x + y)  - (2x  -1) = 6

                     ( x+y) ( 2x - 1) - ( 2x -1) = 6

                       (2x -1) ( x + y - 1) = 6

                      vì 6 = 2.3 =>  Ư(6) = { -6; -3; - 2; -1; 1; 2; 3; 6}

        Nên  với x, y  \(\in\) Z thì  ( 2x-1)(x+y -1) = 6  khi và chỉ khi :

                       th1 : \(\left\{{}\begin{matrix}2x-1=-1\\x+y-1=-6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\)

                      th2: \(\left\{{}\begin{matrix}2x-1=1\\x+y-1=6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1\\y=6\end{matrix}\right.\)

                     th3 : \(\left\{{}\begin{matrix}2x-1=-2\\x+y-1=-3\end{matrix}\right.\) => x = -1/2 (loại)

                     th4 : \(\left\{{}\begin{matrix}2x-1=2\\x+y-1=6\end{matrix}\right.\) => x = 3/2 (loại)

                     th5 :  \(\left\{{}\begin{matrix}2x-1=-3\\x+y-1=-2\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)

                     th6 : \(\left\{{}\begin{matrix}2x-1=3\\x+y-1=2\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

                    th7 : \(\left\{{}\begin{matrix}2x-1=-6\\x+y-1=-1\end{matrix}\right.\) => x = -5/2 (loại)

                     th8 : \(\left\{{}\begin{matrix}2x-1=6\\x+y-1=1\end{matrix}\right.\) => x 7/2 (loại)

    Kết luận các cặp giá trị nguyên của x; y thỏa mãn đề bài là:

      (x; y) =(0; -5); (1; 6); ( -1; 0); (2; 1)

 

 

 

24 tháng 12 2022

ở th4 mình viết nhầm chút nhé . em sửa lại thành  cho đúng em nhé 

                  \(\left\{{}\begin{matrix}2x-1=2\\x+y-1=3\end{matrix}\right.\) 

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

I don't now

or no I don't

..................

sorry

26 tháng 7 2018

a) \(x^4-x^3-7x^2+x+6=0\)

\(\Leftrightarrow\)\(x^4-x^3-7x^2+7x-6x+6=0\)

\(\Leftrightarrow\)\(x^3\left(x-1\right)-7x\left(x-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^3-7x-6\right)=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)

đến đây lm tiếp