Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y^2+2xy-7x-12=0\)
\(\Leftrightarrow y^2-12+x\left(2y-7\right)=0\)
\(\Leftrightarrow4y^2-48+4x\left(2y-7\right)=0\)
\(\Leftrightarrow4y^2-49+4x\left(2y-7\right)=-1\)
\(\Leftrightarrow\left(2y-7\right)^2+4x\left(2y-7\right)=-1\)
\(\Leftrightarrow\left(2y-7\right)\left(2y+4x+7\right)=-1\)
Vì x, y nguyên nên ta có bảng sau:
2y-7 | 1 | -1 |
2y+4x+7 | -1 | 1 |
y | 4 | 3 |
x | -4 |
-3 |
Vậy cặp số nguyên (x;y) thỏa mãn đề bài là:(-4;4); (-3;3)
\(y^2\)+ 2xy-7x-12=0 <=> 4\(y^2\)+8xy-28x-48=0 <=> 4\(y^2\)-49+4x(2y-7)=-1
<=> (2y-7)(2y+7+4x)=-1
=> Ta có : 2y-7= -1 và 2y+7+4x= 1
hoặc 2y-7=1 và 2y+7+4x=-1
*) 2y-7=1và 2y+7+4x=-1 *) 2y-7=-1 và 2y+7+4x=1
=> x=-4 và y=4 =>x=-3 và y=3
Vậy x=-4 và y=4 Hoặc x=-3 và y=3
\(2xy-5x+7y=12\)
\(\Leftrightarrow y\left(2x+7\right)-5x=12\)
\(\Leftrightarrow y\left(2x+7\right)=12+5x\)\(\Leftrightarrow y=\frac{12+5x}{2x+7}\left(1\right)\)
Để y nguyên thì \(\frac{12+5x}{2x+7}\in Z\Rightarrow12+5x⋮2x+7\)
Ta thấy: \(2\left(12+5x\right)⋮2x+7\Rightarrow24+10x⋮2x+7\)
Lại có: \(5\left(2x+7\right)⋮2x+7\Rightarrow10x+35⋮2x+7\)
Do đó: \(10x+35-\left(24+10x\right)⋮2x+7\)\(\Rightarrow11⋮2x+7\)
=> \(2x+7\inƯ\left(11\right)\). Mà \(x\in Z\Rightarrow2x+7\in Z\Rightarrow2x+7\in\left\{1;11;-1;-11\right\}\)
\(\Rightarrow2x\in\left\{-6;4;-8;-18\right\}\)\(\Rightarrow x\in\left\{-3;2;-4;-9\right\}\)
Thay vào (1); ta được: \(y\in\left\{-2;2;-8;3\right\}\)
Vậy các cặp nghiệm nguyên của phương trình là:
\(\left(x;y\right)\in\left\{\left(-3;-2\right);\left(2;2\right);\left(-4;-8\right);\left(-9;3\right)\right\}.\)
Ukm
It's very hard
l can't do it
Sorry!
a) \(x^4-x^3-7x^2+x+6=0\)
\(\Leftrightarrow x^4+2x^3-3x^3-6x^2-x^2-2x+3x+6=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x^2\left(x+2\right)-x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x^2-x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\). Làm nốt
b) \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)
\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2-6x+9+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)
Do \(\left(x+y\right)^2\ge0;\left(x-3\right)^2\ge0;\left|y+3\right|\ge0\forall x;y\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
c) \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)
\(\Leftrightarrow\left(2x^2+x\right)^2-2.\left(2x^2+x\right).2+4-1=0\)
\(\Leftrightarrow\left(2x^2+x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x^2+x-2=1\\2x^2+x-2=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+x-3=0\\2x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{3}{2}=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2-\frac{25}{16}=0\\\left(x+\frac{1}{4}\right)^2-\frac{9}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2=\frac{25}{16}\\\left(x+\frac{1}{4}\right)^2=\frac{9}{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\pm\frac{5}{4}\\x+\frac{1}{4}=\pm\frac{3}{4}\end{cases}}\)
Từ đó tính đc x
d) \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)=24\)
\(\Leftrightarrow\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(x^2+5x+5=a\), khi đó pt có dạng:
\(\left(a-1\right)\left(a+1\right)-24=0\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+5x+5=5\\x^2+5x+5=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+5x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\\left(x+\frac{5}{4}\right)^2=-\frac{15}{4}\left(vn\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Đối với dạng này thì em biến đổi 1 vế thành tích các đa thức còn 1 vế là số nguyên, sau đó tìm ước số nguyên, cho các đa thức bằng ước đó là tìm được .
2x2 + 2xy - 3x - y = 5
( 2x2 + 2xy ) - x - y - 2x + 1 = 6
2x( x + y) - ( x + y) - (2x -1) = 6
( x+y) ( 2x - 1) - ( 2x -1) = 6
(2x -1) ( x + y - 1) = 6
vì 6 = 2.3 => Ư(6) = { -6; -3; - 2; -1; 1; 2; 3; 6}
Nên với x, y \(\in\) Z thì ( 2x-1)(x+y -1) = 6 khi và chỉ khi :
th1 : \(\left\{{}\begin{matrix}2x-1=-1\\x+y-1=-6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}2x-1=1\\x+y-1=6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1\\y=6\end{matrix}\right.\)
th3 : \(\left\{{}\begin{matrix}2x-1=-2\\x+y-1=-3\end{matrix}\right.\) => x = -1/2 (loại)
th4 : \(\left\{{}\begin{matrix}2x-1=2\\x+y-1=6\end{matrix}\right.\) => x = 3/2 (loại)
th5 : \(\left\{{}\begin{matrix}2x-1=-3\\x+y-1=-2\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
th6 : \(\left\{{}\begin{matrix}2x-1=3\\x+y-1=2\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
th7 : \(\left\{{}\begin{matrix}2x-1=-6\\x+y-1=-1\end{matrix}\right.\) => x = -5/2 (loại)
th8 : \(\left\{{}\begin{matrix}2x-1=6\\x+y-1=1\end{matrix}\right.\) => x 7/2 (loại)
Kết luận các cặp giá trị nguyên của x; y thỏa mãn đề bài là:
(x; y) =(0; -5); (1; 6); ( -1; 0); (2; 1)
ở th4 mình viết nhầm chút nhé . em sửa lại thành cho đúng em nhé
\(\left\{{}\begin{matrix}2x-1=2\\x+y-1=3\end{matrix}\right.\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
I don't now
or no I don't
..................
sorry
a) \(x^4-x^3-7x^2+x+6=0\)
\(\Leftrightarrow\)\(x^4-x^3-7x^2+7x-6x+6=0\)
\(\Leftrightarrow\)\(x^3\left(x-1\right)-7x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^3-7x-6\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
đến đây lm tiếp
y2+2xy-7x=12
=>y2+2xy-7x-12=0
<=>(x2+2xy+y2)-(y2+7y+12)=0
<=>(x+y)2=(y+3)(y+4) (1)
Ta thấy vế trái là số chính phương với mọi x,y nguyên;vế phải là tích 2 số nguyên liên tiếp nên ko phải số chính phương
=>(1) vô lý hay phương trình trên ko có nghiệm x,y nguyên.