K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

bạn ơi hình như đề bạn viết nó có sai sai sao ý =(

14 tháng 9 2017

rgthaegƯ mk chỉ giải được phần a thui 

  x^2 + 2y^2 - 2xy + 2x + 2 - 4y =0 
<=>x^2 + y^2 - 2xy+2x-2y+y^2-2y+1+1=0 
<=>(x-y)^2+2(x-y)+1+(y-1)^2=0 
<=>(x-y+1)^2+(y-1)^2=0 
<=>y=1;x=0

2 tháng 8 2015

 => x^3 +  8y^3 = 0 (1)

và  x^3  - 8y^3 = 16  (2)

Từ (1) và (2) => 2x^3 = 16 => x^3 = 8 => x = 2 

Thay x^3 = 8 và  (1) ta có 8 + 8y^3 = 0 => 8y^3 = -8 => Y^3 = -1 => y = -1 

VẬy x = 2 ; y = -1 

6 tháng 7 2018

Ta có \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)<=> \(x^3+8y^3=0\)(1)

và \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)<=> \(x^3-8y^3=16\)(2)

Lấy (1) cộng (2)

=> \(2x^3=16\)

<=> \(x^3=8\)

<=> \(x=2\)

Từ (1) <=> \(8y^3=-x^3\)

<=> \(8y^3=-8\)

<=> \(y^3=-1\)

<=> \(y=-1\)

Vậy khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)thì \(\hept{\begin{cases}\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\\\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\end{cases}}\).

6 tháng 7 2018

\(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\Leftrightarrow x^3+8y^3=0\)            (1)

\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\Leftrightarrow x^3-8y^3=16\)        (2)

TỪ (1) => \(x^3=-8y^3\)  thay vào (2) 

=> \(x^3+x^3=16\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)

mà \(x^3=-8y^3\Rightarrow y=-1\)

vậy x=2 và y=-1

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)