Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x+1\right)^2+3y^2=21\)
Ta có: x,y nguyên
=>\(\left(x+1\right)^2;y^2\) là các số chính phương
mà \(2\left(x+1\right)^2+3y^2=21\)
nên \(\left[2\left(x+1\right)^2;3y^2\right]\in\left\{\left(18;3\right)\right\}\)
=>\(\left(\left(x+1\right)^2;y^2\right)\in\left(9;1\right)\)
=>\(\left(x+1;y\right)\in\left\{\left(3;-1\right);\left(3;1\right);\left(-3;-1\right);\left(-3;1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(2;-1\right);\left(2;1\right);\left(-4;-1\right);\left(-4;1\right)\right\}\)
\(2\left(x+1\right)^2+3y^2=21\left(1\right)\)
Ta có: 2(x+1)2+3y2=21≥3y2⇒y2≤7
Mà y2 là SCP nên \(y^2\in\left\{0;1;4\right\}\)
Với \(y^2=0\Rightarrow y=0\), thay vào (1) ta có:
\(2\left(x+1\right)^2+3.0^2=21\\ \Rightarrow2\left(x+1\right)^2=21\\ \Rightarrow\left(x+1\right)^2=\dfrac{21}{2}\left(ktm\right)\)
Với \(y^2=1\Rightarrow y=\pm1\), thay vào (1) ta có:
\(2\left(x+1\right)^2+3.\left(\pm1\right)^2=21\\ \Rightarrow2\left(x+1\right)^2+3=21\\ \Rightarrow\left(x+1\right)^2=9\\ \Rightarrow\left[{}\begin{matrix}x+1=-3\\x+1=3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Với \(y^2=4\Rightarrow y=\pm2\), thay vào (1) ta có:
\(2\left(x+1\right)^2+3.\left(\pm2\right)^2=21\\ \Rightarrow2\left(x+1\right)^2+12=21\\ \Rightarrow\left(x+1\right)^2=\dfrac{9}{2}\left(ktm\right)\)
Vậy \(\left(x,y\right)\in\left\{\left(-4;1\right);\left(-4;-1\right);\left(2;1\right);\left(2;-1\right)\right\}\)
Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
2x^2-3y^2+4z^2=280
=>2*9k^2-3*16k^2+4*25k^2=280
=>k^2=4
TH1: k=2
=>x=6; y=8; z=10
TH2: k=-2
=>x=-6; y=-8; z=-10
Chọn A
Ta có: P(x) = 2x2 - 3y2 + 5y2 - 1 + 5x2 - 4y2
= 7x2 - 2y2 - 1.
Bài 2:
a: \(\left(x-8\right)\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
=>\(4x-3-x-5=30-3x\)
=>3x-8=30-3x
=>6x=38
=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)
Bài 6:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)
Do đó:HD<HC
a, \(M+N=2x^2+x^2-2xy-2xy-3y^2+3y^2+1-1=3x^2-4xy\)
\(M-N=2x^2-x^2-2xy+2xy-3y^2-3y^2+1+1=x^2-6y^2+2\)
b, \(P\left(x\right)+Q\left(x\right)=x^3-4x^3+2x^2-6x+x+2-5=-3x^3+2x^2-5x-3\)
\(P\left(x\right)-Q\left(x\right)=x^3+4x^3-2x^2-6x-x+2+5=5x^3-2x^2-7x+7\)
Câu hỏi của Kamui - Toán lớp 7 | Học trực tuyến