Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x/2=y/3=k Ta có x=2k ; y=3k Mà x.y=54=>2kx3k=54=>6k=54=>k=8 => x/2=8=>x=16 =>y/3=8=>y=24
quy đồng: x/2 = 3x/6
y/3= 2y/6
đều có mẫu bẵng 6 và lại bằng nhau. suy ra 3x = 2y
suy ra x= 3k
y = 2n
với k,n là số nguyên; và 3k, 2n thuộc bội trung của 2 và 3
câu 1L
a, xy+x-y+10=0
x(y+1)-y-1=9
x(y+1)-(y+1)=9
(x-1)(y+1)=9
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 | 9 | -9 |
y+1 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 | 10 | -8 |
y | 8 | -10 | 2 | -4 | 0 | -2 |
b, xy+3x+y=10
x(y+3)+(y+3)=13
(x+1)(y+3)=13
tiếp tục giống a
bài 2:
a, Vì |x-5| \(\ge\)0
=>A=|x-5|-100 \(\ge\) -100
Dấu "=" xảy ra khi x = 5
Vậy GTNN của A = -100 khi x=5
b, vì \(\hept{\begin{cases}\left|x+y\right|\ge0\\\left|y-10\right|\ge0\end{cases}\Rightarrow\left|x+y\right|+\left|y-10\right|\ge0\Rightarrow B=\left|x+y\right|+\left|y-10\right|+8\ge8}\)
Dấu "="xảy ra khi x=-10,y=10
Vậy GTNN của B = 8 khi x=-10,y=10
Giải:
a) \(\left(x-4\right).\left(y+1\right)=8\)
\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng giá trị:
x-4 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
y+1 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
x | -4 | 0 | 2 | 3 | 5 | 6 | 8 | 12 |
y | -2 | -3 | -5 | -9 | 7 | 3 | 1 | 0 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
b) \(\left(2x+3\right).\left(y-2\right)=15\)
\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
2x+3 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y-2 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -9 | -4 | -3 | -2 | -1 | 0 | 1 | 6 |
y | 1 | -1 | -3 | -13 | 17 | 7 | 5 | 3 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
c) \(xy+2x+y=12\)
\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
x+1 | 1 | 2 | 7 | 14 |
y+2 | 14 | 7 | 2 | 1 |
x | 0 | 1 | 6 | 13 |
y | 12 | 5 | 0 | -1 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
d) \(xy-x-3y=4\)
\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 7 |
y-1 | 7 | 1 |
x | 4 | 10 |
y | 8 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)
\(\overline{x279y}\) chia 5 dư 3 => y={3; 8}
+ Với y=3 \(\Rightarrow x279y=\overline{x2793}\) chia hết cho 9 => x+2+7+9+3=x+21 chia hết cho 9 => x=6
+ Với y=8 \(\Rightarrow\overline{x279y}=\overline{x2798}\) chia hết cho 9 => x+2+7+9+8=x+26 chia hết cho 9 => x=1
gọi:n=x279y
để n : 5 dư 3 thì chữ số tận cùng phải là 3 hoặc 8.
vậy:y=3 hoặc 8
t h 1:nếu y=3
thì n=x2793
để n : hết 9 thì x=6(lý do bn tự suy nghĩ)
t h 2:nếu y=8
thì n=x2798
để n : hết 9 thì x=1
vậy:nếu y=3 thì x=6
nếu y=8 thì x=1
k và kb nha!
- Đặt (x; y) = d nên x = d.m; y = d.n với (m;n) =1. Giả sử x ≤ y thì m ≤ n.
- Ta có: x.y = dm.dn= d2.mn
BCNN(x; y) = x y x ; y = d 2 m . n d = d . m . n
- Ta có: BCNN (x;y) = 10 và x. y = 20 nên d = x y B C N N ( x ; y ) = 20 10 = 2
=> 2.m.n =10 nên m.n = 5
Bảng giá trị