Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+2x+y+11=0
=> x.(y+2)+y=-11
=> x.(y+2)+(y+2)= -11+2=-9
=> (x+1).(y+2)=-9
=> x+1 và y+2 thuộc Ư(-9)={1;-1;3;-3;9;-9}
x+1 y+2 x y 1 -9 0 -11 -1 9 -2 7 3 -3 2 -5 -3 3 -4 1 9 -1 8 -3 -9 1 -10 -1
Vậy....
\(xy+2x+y+11=0\)
\(\Rightarrow y\left(x+y\right)+2\left(x+5,5\right)=0\)
\(\Rightarrow\hept{\begin{cases}y\left(x+y\right)=0\\x+5,5=0\end{cases}\Rightarrow\hept{\begin{cases}y=0\\x=-5,5\end{cases}}}\)
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(2x=3y=\frac{2x+3y}{1+1}=\frac{2x+3y}{2}=10z-2x-3y\)
\(=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{2x+3y+\left(10z-2x-3y\right)}{2+1}=\frac{10z}{3}=\frac{z}{\frac{3}{10}}\)
Lại áp dụng tính chất của dãy tỉ số = nhau:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{3}{10}}=\frac{x-y+z}{\frac{1}{2}-\frac{1}{3}+\frac{1}{10}}=\frac{-33}{\frac{7}{15}}=-33.\frac{15}{7}=\frac{-495}{7}\)
\(\Rightarrow\begin{cases}x=\frac{-495}{7}.\frac{1}{2}=\frac{-495}{14}\\y=\frac{-495}{7}.\frac{1}{3}=\frac{-165}{7}\\z=\frac{-495}{7}.\frac{3}{10}=\frac{-297}{14}\end{cases}\)
Vậy \(x=\frac{-495}{14};y=\frac{-165}{7};z=\frac{-297}{14}\)
mk thấy câu b) hơi khó ,mk lam giup bn
b) x/3 = y/3 = z/5
hay 2x/6 = 3y/9 z/5
ta có; ( 2x- 3y +z) / ( 6-9+5) = 6/2 =3
x = 3.2 =6
y = 3.2 =6
z = 5.2 =10
Thần đồng toán mà cũng chịu thua à, mình cũng chịu
Nguyễn Huy Tú mà cx đăng bài àk