Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}\)
\(=\frac{2x+1+3y-2}{12}=\frac{2x+3y-1}{12}\)
\(\text{Suy ra: }\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\Rightarrow6x=12\Rightarrow x=2\)
=>\(\frac{2.2+1}{5}=\frac{3y-2}{7}\Rightarrow1=\frac{3y-2}{7}\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)
Vậy x=2;y=3
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\left(2\right)\)
Từ (1) và (2) => 6x = 12 => x = 2
Thay x = 2 => \(\frac{2x+1}{5}=\frac{2.2+1}{5}=4+15=1\)
\(\frac{3y-2}{7}=1\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)
Vậy x = 2 ; y = 3
theo tính chất của dãy tỉ số bằng nhau
2x + 1/ 5 = 3y - 2 /7 = (2x+1)+(3y-2)/5+7=2x+3y-1/12=2x+3y-1/6x
Vậy 12=6x
x=2
y=3
x+y=5
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
=> \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
=> 6x = 12
=> x = 2
Thay x = 2 ta có:
\(\frac{2.2+1}{5}=\frac{3y-2}{7}=1\)
=> 3y - 2 = 7
=> 3y = 9
=> y = 3
=> x + y = 2 + 3 = 5
áp dụng tính chất của dãy tỉ số bằng nhau
=> 2x+1 /5=3y-2 /7=2x+1+3y-2 /5+7=2x+3y-1 /12
mà 2x+3y-1 /12=2x+3y-1 /6x
=> 6x=12=> x=2
thế x vào ta được : 2x+1/5=3y-2/7=4+1 /5=3y-2 /7=>3y-2=7=> y=3
vậy x+y=2+3=5
tick nha ^^
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6}=\frac{2x+1+3y-2-2x-3y+1}{5+7-6}=\frac{0}{6}=0\)
\(\Rightarrow2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2};\)
\(3y-2=0\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\)
Vậy \(x=-\frac{1}{2};y=\frac{2}{3}\)
Áp dụng tc cua dtsbn ta có
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\left(1\right)\)
\(\Rightarrow\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\Rightarrow6x=12\Rightarrow x=2\)
Thay vào 1 ta có:\(\frac{2.2+1}{5}=\frac{3y-2}{7}\Rightarrow1=\frac{3y-2}{7}\Rightarrow\frac{3y-2}{7}=1\)
\(\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)
Vậy.....