Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2018}=\dfrac{3-y}{2019}=\dfrac{x-1+3-y}{2018+2019}=1\)
=>x-1=2018 và 3-y=2019
=>x=2019; y=-2016
Ta có :
\(\frac{x+y}{2017}=\frac{xy}{2018}=\frac{x-y}{2019}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+y}{2017}=\frac{x-y}{2019}=\frac{x+y+x-y}{2017+2019}=\frac{x+x}{4036}=\frac{2x}{4036}=\frac{x}{2018}\)
Lại có :
\(\frac{xy}{2018}=\frac{x}{2018}\)
\(\Leftrightarrow\)\(xy=x\)
\(\Leftrightarrow\)\(y=1\)
Do đó :
\(\frac{x+y}{2017}=\frac{x-y}{2019}=\frac{x+y-x+y}{2017-2019}=\frac{y+y}{-2}=\frac{2y}{-2}=\frac{y}{-1}=\frac{1}{-1}=-1\) ( áp dụng t/c dãy tỉ số bằng nhau )
\(\Rightarrow\)\(\frac{x}{2018}=-1\)
\(\Rightarrow\)\(x=-2018\)
Vậy \(x=-2018\) và \(y=1\)
Chúc bạn học tốt ~
a)\(2019-\left|x-2019\right|=x\)
\(\Rightarrow2019-x=\left|x-2019\right|\)
=>\(\left|x-2019\right|=-\left(x-2019\right)\)
=>\(x-2019\le0\)
=>\(x\le2019\)
b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)
mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)
a, Ta có:
\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)
Xét x<2019 thì |x-2019|=-x+2019
Khi đó: 2019-(-x+2019)=x
\(\Leftrightarrow\)-x+2019=2019-x
\(\Leftrightarrow\)-x+2019+x=2019
\(\Leftrightarrow\)0x+2019=2019
\(\Leftrightarrow\)0x=0 (thỏa mãn)
Xét 2019\(\le\)x thì |x-2019|=x-2019
Khi đó 2019-(x-2019)=x
\(\Leftrightarrow\)2019-x+2019=x
\(\Leftrightarrow\)4038-x=x
\(\Leftrightarrow\)4038=2x
\(\Leftrightarrow\)x=2019(thỏa mãn)
Vậy .......................................................!!!
Hình như đề không đúng. Cô sửa đề luôn nhé!
\(x^{2018}-y^{2018}=0\)
Với x +y + z khác 0.
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)=> x = y = z
Ta có: \(x^{2018}-y^{2019}=0\)
<=> \(x^{2018}-x^{2019}=0\)
<=> \(x^{2018}\left(1-x\right)=0\)
<=> 1- x = 0 ( vì x khác 0)
<=> x = 1
Vậy x = y = z = 1.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{2018}=\frac{3-y}{2019}=\frac{x-1+3-y}{2018+2019}=\frac{x-y+2}{4037}=\frac{4035+2}{4037}=\frac{4037}{4037}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2018}=1\\\frac{3-y}{2019}=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=2018\\3-y=2019\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2019\\y=-2016\end{cases}}\)
Vậy,.......
cảm ơn bn nha!