Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ bt làm câu d)
Cách 1:
\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x\times\frac{x}{4}=y\times\frac{y}{5}\)
\(\Rightarrow\frac{x^2}{4}=\frac{xy}{5}\Rightarrow\frac{x^2}{4}=\frac{180}{5}=36\)
\(\Rightarrow x^2=36\times4=144=\orbr{\begin{cases}\left(+12\right)^2\\\left(-12\right)^2\end{cases}\Rightarrow x=\orbr{\begin{cases}12\\-12\end{cases}}}\)
Với x = 12 thì y = 180 : 12 = 15
Với x = -12 thì y = 180 : (-12) = -15
* Cách 2:
\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x=\frac{4}{5}y\)
Ta có:
\(xy=180\Rightarrow\frac{4}{5}y\times x=180\times\frac{4}{5}=144\)
Mà \(\frac{4}{5}y=x\Rightarrow x^2=144\Rightarrow...\) làm tương tự câu a
Ta có : \(\frac{x-1}{5}=\frac{y-2}{2}=\frac{z-2}{3}=\frac{2y-4}{4}=\frac{x-1+2y-4-\left(z-2\right)}{5+4-3}=\frac{x-1+2y-4-z+2}{6}\)
\(=\frac{x+2y-z-3}{6}=\frac{3}{6}=\frac{1}{2}\)
Nên : \(\frac{x-1}{5}=\frac{1}{2}\Rightarrow x-1=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)
\(\frac{y-2}{2}=\frac{1}{2}\Rightarrow y-2=1\Rightarrow y=3\)
\(\frac{z-2}{3}=\frac{1}{2}\Rightarrow z-2=\frac{3}{2}\Rightarrow z=\frac{7}{2}\)
Vậy ,,,,,,,,,,,,,,,,,,
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...
b) từ đề bài suy ra được x=2y/3. Z=5y/3 thay vào x.y.z=810 ta được. 10/9 nhân y^3 =810 => y^3=729=>y=9=>x=6. Z=15.
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)
Tương đương : 7x - 21 = 5x + 25
7x - 5x = 25 + 21 = 46
2x = 46 suy ra : x = 46/2 = 23
Vậy x = 23
Em chỉ giải phần B thôi nhé !
x/4=y/3=x-y/4-3=x2-y2=42-32=28/7=4
Suy ra x/4=4 -> x= 16
y/3=4-> y =12
chị thông cảm em mói học lop 6 dung thi dung sai thi sai dung la em nha
a) theo t/c dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}=\frac{2x+3y-5z}{6-12-35}\)=\(\frac{82}{-41}=-2\)
=> x = -6; y= 8; z= -14
b) từ 5x=6y và 3y=4z => \(\frac{x}{6}=\frac{y}{5};\frac{y}{4}=\frac{z}{3}\) => \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)
ta có \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=\frac{x^2-y^2+z^2}{24^2-20^2+15^2}\)=\(\frac{401}{401}=1\)
=> \(x=24;y=20;z=15\)
a/ \(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}\Rightarrow\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}=\frac{2x+3y-5z}{6+\left(-12\right)-35}=\frac{82}{-41}=-2\)
Khi đó:\(\frac{2x}{6}=-2\Rightarrow x=-6;\frac{3y}{-12}=-2\Rightarrow y=8;\frac{5z}{35}=-2\Rightarrow z=-12\)
b/\(5x=6y\Rightarrow\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{24}=\frac{y}{20};3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{y}{20}=\frac{z}{15}\Rightarrow\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)
Đặt\(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=k\Rightarrow\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=k^2\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=\frac{x^2-y^2+z^2}{576-400+225}=\frac{401}{401}=1=k^2\Rightarrow k\in\left\{1;-1\right\}\)
Khi \(k=-1\)thì: \(\frac{x}{24}=-1\Rightarrow x=-24;\frac{y}{20}=-1\Rightarrow y=-20;\frac{z}{15}=-1\Rightarrow z=-15\)
Khi \(k=1\)thì: \(\frac{x}{24}=1\Rightarrow x=24;\frac{y}{20}=1\Rightarrow y=20;\frac{z}{15}=1\Rightarrow z=15\)
c)\(\frac{3x}{2}=\frac{2y}{3}=\frac{4z}{5}\Rightarrow\frac{3x}{24}=\frac{2y}{36}=\frac{4z}{60}\Rightarrow\frac{x}{8}=\frac{y}{18}=\frac{z}{15}\)
Áp dụng tính chất của tỉ lệ thức ta có: \(\frac{x}{8}=\frac{y}{18}=\frac{z}{15}=\frac{x+y-z}{8+18-15}=\frac{44}{11}=4\)
khi đó:\(\frac{x}{8}=4\Rightarrow x=32;\frac{y}{18}=4\Rightarrow y=72;\frac{z}{15}=4\Rightarrow z=60\)
b,Vì \(\frac{x}{3}=\frac{y}{7}=\frac{z}{5}\)=>\(\left(\frac{x}{3}\right)^2=\left(\frac{y}{7}\right)^2=\left(\frac{z}{5}\right)^2\)=> \(\frac{x^2}{3^2}=\frac{y^2}{7^2}=\frac{z^2}{5^2}\)=> \(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}\left(1\right)\)
Mà \(x^2-y^2+z^2=-60\left(2\right)\)
Từ (1)(2) Ta áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}=\frac{x^2-y^2+z^2}{9-49+25}=\frac{-60}{-15}=4\)(Vì\(x^2-y^2+z^2=-60\) )
Ta có \(\frac{x^2}{9}=4=>x^2=4.9=36=>x=+-\left(6\right)\)
\(\frac{y^2}{49}=4=>y^2=4.49=196=>y=+-\left(14\right)\)
\(\frac{z^2}{25}=4=>z^2=4.25=100=>z=+-\left(10\right)\)
Mặt khác x,y,z cùng dấu nên => \(\hept{\begin{cases}x=6;y=14;z=10\\x=\left(-6\right);y=\left(-14\right);z=\left(-10\right)\end{cases}}\)
Vậy........
k cho mình nha!!!
b/
Ta có \(\frac{x}{3}=\frac{y}{7}=\frac{z}{5}\)=> \(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}\)
và \(x^2-y^2+z^2=-60\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{25}=\frac{x^2-y^2+z^2}{9-49+25}=\frac{-60}{-15}=4\)
=> \(\frac{x}{3}=4\)=> x = 12
=> \(\frac{y}{7}=4\)=> y = 28
=> \(\frac{z}{5}=4\)=> z = 20