K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

Ta có : 3y2 + x2 + 2xy + 2x + 6y + 3 = 0

=> (x2 + 2xy + y2) + (2x + 2y) + 1 + (2y2 + 4y + 2) = 0

=> (x + y)2 + 2(x + y) + 1 + 2(y2 + 2y + 1) = 0 

=> (x + y + 1)2 + 2(y + 1)2 = 0

=> \(\hept{\begin{cases}x+y+1=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy x = 0 ; y = -1 là giá trị cần tìm

10 tháng 12 2020

\(3x^2+x^2+2xy+2x+6y+3=0\)

\(\left(x^2+2xy+y^2\right)+\left(2y^2+4y+2\right)+\left(2y+2x\right)+1=0\)

\(\left(x+y\right)^2+2\left(y^2+2y+1\right)+2\left(x+y\right)+1=0\)

\(\left(x+y\right)^2+2\left(y+1\right)^2+2\left(x+y\right)+1=0\)

\(\left(x+y+1\right)^2+2\left(y+1\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}x+y+1=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=-1\end{cases}}}\)

23 tháng 5 2015

5x ( x + 1 ) ( x - 1 ) > 0

đầu tiên , giải quyết cho 5x ( x + 1 ) ( x - 1 ) = 0

5x = 0 x = 0

5x ( x + 1 ) ( x - 1 ) = 0 - > x + 1 = 0 - > x = -1

x - 1 = 0 x = 1

23 tháng 5 2015

a) 5x ( x - 1 ) - ( 1 - x ) = 0

=> 5x(x - 1) - 1 + x = 0

=> 5x(x - 1) + (x - 1) = 0

=> (x - 1)(5x + 1) = 0

=> x - 1  = 0 hoặc 5x + 1 = 0

+) x - 1 = 0 => x = 1

+) 5x + 1 = 0 => 5x = -1

=> x = -1/5

a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)

\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)

\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0

Suy ra x=-1;y=-1/2

b.Ta có:\(x^2-6x+y^2-6y+21=3\)

\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0

Suy ra x=y=3

c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0

Suy ra x=y=4

6 tháng 8 2020

a) 2x2 - 4xy + 4y2 + 2x + 1 = 0

<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0

<=> ( x - 2y )2 + ( x + 1 )2 = 0

<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)

b) x2 - 6x + y2 - 6y + 21 = 3

<=> x2 - 6x + y2 - 6y + 21 - 3 = 0

<=> x2 - 6x + y2 - 6y + 18 = 0

<=> x2 - 6x + 9 + y2 - 6y + 9 = 0

<=> ( x - 3 )2 + ( y - 3 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

c) 2x2 - 8x + y2 - 2xy + 16 = 0

<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0

<=> ( x - y )2 + ( x - 4 )2 = 0

<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)

6 tháng 7 2021

b) 10x - x2 - 9y2 + 6y - 100 

= - (x2 - 10x + 25) - (9y2 - 6y + 1) -  74

= - (x - 5)2 - (3x - 1)2 - 74 \(\le-74< 0\)