K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2023

a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)

b) \(\left|2x+3\right|=x+2\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)

28 tháng 8 2023

Đính chính

Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)

2 tháng 11 2021

\(1,\)

\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)

Do đó PT vô nghiệm

\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

 

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:
$(x+y)^2+(1-x)(1+y)=0$

$\Leftrightarrow x^2+2xy+y^2+1+y-x-xy=0$

$\Leftrightarrow x^2+xy+y^2+y-x+1=0$

$\Leftrightarrow 2x^2+2xy+2y^2+2y-2x+2=0$

$\Leftrightarrow (x^2+2xy+y^2)+(x^2-2x+1)+(y^2+2y+1)=0$

$\Leftrightarrow (x+y)^2+(x-1)^2+(y+1)^2=0$

Vì $(x+y)^2\geq 0; (x-1)^2\geq 0; (y+1)^2\geq 0$ với mọi $x,y$ nên để tổng của chúng $=0$ thì:

$(x+y)^2=(x-1)^2=(y+1)^2=0$

$\Leftrightarrow (x,y)=(1,-1)$

x = 1/8 - y/4 = (1-2y)/8 
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1 
do đó x/8 = 5/(1-2y) (*) 
x, y nguyên khi 1-2y phải là ước của 5 
* 1-2y = -1 => y = 1 => x = -40 
* 1-2y = 1 => y = 0 => x = 40 
* 1-2y = -5 => y = 3 => x = -8 
* 1-2y = 5 => y = -2 => x = 8 
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5) .

30 tháng 10 2017

y-x=1

=>y=x+1

x+y=4031

x+x+1=4031

2x=4031+1=4032

x=4032/2=2016

=>x=2016

y-x=1

y-2016=1

y=1+2016=2017

=>y=2017

Suy ra x=2016,y=2017

30 tháng 10 2017

x=(4031-1)/2=2015

y=4031-2015=2016

chúc bạn học tốt k mình nha