Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!
a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)
<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)
<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\) (1)
TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)
=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
VẬY \(\left(x;y\right)=\left(3;2\right)\)
Ta có: \(5x^2-4xy+2x-2y+y^2+2=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4x-2y\right)+1+\left(x^2-2x+1\right)==0\)
\(\Leftrightarrow\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+\left(x-1\right)^2=0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-y+1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
Ta có: \(y^2+2y+4^x-2^{x+1}+2=0\)
\(\Leftrightarrow y^2+2y+1+2^{2x}-2^x.2^1+1=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x\right)^2-2.2^x+1=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\2^x=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1\\2^x=2^0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}\)
Vậy x = 0 và y = -1
Lưu ý: \(\hept{\begin{cases}\\\end{cases}}\)là kí hiệu biểu hiện từ "và" nha bạn
Ta có :
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow\)\(\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\)\(\left[x^2-2.x.2+2^2\right]+\left[\left(2y\right)^2-2.2y.1+1^2\right]=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(2y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
Vậy \(x=2\) và \(y=\frac{1}{2}\)
Chúc bạn học tốt ~
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow\)\(\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )
\(\Leftrightarrow x=2\)
b) \(2x^3+x^2-6x=0\)
\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)
c) \(4x^2+4xy+x^2-2x+1+y^2=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)
mik ko bít
I don't now
................................
.............
Lời giải:
$y^2+2y+4^x-2^{x+1}+2=0$
$\Leftrightarrow (y^2+2y+1)+(4^x-2.2^x+1)=0$
$\Leftrightarrow (y+1)^2+(2^x-1)^2=0$
$\Rightarrow (y+1)^2=(2^x-1)^2=0$
$\Rightarrow y=-1; x=0$