\(x^2-xy-5x+5y-1=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2018

ta có :x(x-y)-5(x-y)=1

        (x-y)(x-5)=1=1*1=(-1)(-1)

sau đó xét hai TH là ra kết quả

4 tháng 9 2018

\(x^2-xy-5x+5y-1=0\)

\(x\left(x-y\right)-5\left(x-y\right)=1\)

\(\left(x-5\right)\left(x-y\right)=1=1\cdot1=\left(-1\right)\cdot\left(-1\right)\)

Ta có bảng :

x-51-1
x-y1-1
x64
y55

Vậy các cặp số x; y thỏa mãn là { 6;5 } và { 4;5 }

25 tháng 6 2017

a)\(x^2+5y^2-2xy+4y+1=0\)

\(x^2+2xy+y^2+4y^2+4y+1=0\)

\(\left(x+y\right)^2+\left(2y+1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\2y+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\\y=-\frac{1}{2}\left(1\right)\end{cases}}\)

      Từ (1) ta đc: x = 1/2

b)\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)

27 tháng 12 2019

CÂU B Sao bạn làm được vậy

7 tháng 11 2017

1)

a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)

b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)

c) \(\dfrac{21x^2y^3}{6xy}=\dfrac{7xy^2}{2}\left(xy\ne0\right)\)

d) \(\dfrac{2x+2y}{4}=\dfrac{2\left(x+y\right)}{4}=\dfrac{x+y}{2}\)

e) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5\left(x-y\right)}{3\left(x-y\right)}=\dfrac{5}{3}\left(x\ne y\right)\)

f) \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}=-5x\dfrac{x-y}{y-x}=-5x\dfrac{x-y}{-\left(x-y\right)}\)

\(=-5x.\left(-1\right)=5x\left(x\ne y\right)\)

2)

a) Nhớ ghi ĐK vào nhá, lười quá :V\(\dfrac{x^2-16}{4x-x^2}=-\dfrac{\left(x-4\right)\left(x+4\right)}{x^2-4x}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)}=\dfrac{x+4}{x}\)

b) \(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)

\(=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)

c) \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+3\right)^3}{y\left(x+y\right)^2}\) ( câu này có gì đó sai sai )

d) \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)

\(=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8}{10}=\dfrac{4}{5}\)

e) \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

a)

\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)

b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)

c)

\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)

d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)

f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)

g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)

\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)

2 tháng 7 2019

\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(=9x\)

Thay x=15 \(\Rightarrow A=9.15=135\)

4 tháng 7 2019

\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)

\(=6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2-5xy^3\)

\(=19x^2y^2-11xy^3-8x^3\)

Thay x=1/2 ; y=2 vào B \(\Rightarrow19.\left(\frac{1}{2}\right)^2.2^2-11\cdot\frac{1}{2}\cdot2^3-8\cdot\left(\frac{1}{2}\right)^3\)

\(=19-44-1\)

\(=-26\)

11 tháng 6 2018

_______________Bài làm___________________

a, \(x^2+xy+y^2+1\)

\(=\left(x^2+2x\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^3}{4}+1\)

Do \(\left(x+\dfrac{y}{2}\right)^2\ge0\forall x,y\)

\(\dfrac{3y^2}{4}\ge0\forall y\)

Nên: \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\forall x,y=>đpcm\)

b, \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+\left(y^2-6y+9\right)+5\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+\left(y-3\right)^2+5\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Do \(\left(x-2y+1\right)^2\ge0\forall x,y\)

\(\left(y-3\right)^2\ge0\forall y\)

Nên \(\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)

c, \(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-2x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)

Do .........

tự làm ik

25 tháng 6 2017

5x^2 + 5y^2 +8xy -2x +2y +2 =0

4x^2 +8xy +4y^2 + x^2 -2x + 1 +y^2 +2y+1=0

(2x+2y)^2 +(x-1)^2 +(y+1)^2 =0

Vì ..... đều >=0 ( bạn tự viết tiếp )

Nên x=-y và x=1 và y= -1 (@_@)

Vậy (x;y)= (1;-1)

25 tháng 6 2017

mk k viết đề nha :

<=>4x2+8xy+4y2+x2-2x+1+y2+2y+1=0

<=>4(x+y)2+(x-1)2+(y+1)2=0       (1)

mà 4(x+y)2>=0,(x-1)2>=0,(y+1)2>=0

=> để (1) có nghiệm thì đòng thời x+y=0,x-1=0,y+1=0

=>x=1,y=-1

vậy x=1,y=-1

5 tháng 7 2017

\(=\dfrac{y\left(5x+y^2\right)-x\left(5y-x^2\right)}{x^2y^2}\)

\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}\)

\(=\dfrac{y^3+x^3}{x^2y^2}\)

5 tháng 7 2017

Ngay ở dưới có ng` làm rồi đó bạn