\(|x-2018|\)+ ( x - 2y )2 = 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

Do \(\left(x-2y\right)^2\ge0\forall x;y\)

Mà \(|x-2018|+\left(x-2y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-2018=0\\x-2y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2018\\y=1009\end{cases}}\)

10 tháng 1 2019

\(\left|x-2018\right|+\left(x-2y\right)^2=0\)

Ta có \(\left|x-2018\right|\ge0\forall x,\left(x-2y\right)^2\ge0\forall x,y\)

\(\Rightarrow\left|x-2018\right|+\left(x-2y\right)^2\ge0\forall x,y\)

\(\Rightarrow\left|x-2018\right|+\left(x-2y\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}x-2018\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2018\\2018-2y=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2018\\y=1009\end{cases}}}\)

1 tháng 4 2018

nhầm không có y2-y2 mà chỉ có -y2 thôi

12 tháng 12 2019

Hình như đề không đúng. Cô sửa đề luôn nhé!

\(x^{2018}-y^{2018}=0\)

Với x +y + z  khác 0.

Áp dụng dãy tỉ số bằng nhau ta có: 

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)=> x = y = z 

Ta có: \(x^{2018}-y^{2019}=0\)

<=> \(x^{2018}-x^{2019}=0\)

<=> \(x^{2018}\left(1-x\right)=0\)

<=>  1- x = 0 ( vì x khác 0)

<=>  x = 1

Vậy x = y = z = 1.

3 tháng 1 2018

Theo tính chất của dãy tỷ số bằng nhau, ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1.\) Suy ra  x = y = z .

mặt khác, theo giả thiết:   x2017 = y2005  Nên   x = y = 1. Vì :

            - Nếu  x = y > 1  :      x2017> x2005 = y2005

            - Nếu  x = y < 1 thì  :     x2017 < x2005 = y2005 

Vậy x = y = z = 1

15 tháng 8 2017

a) Ta có:

\(\left|x-2017\right|\ge0\) với \(\forall x\)

\(\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu

Vậy \(x;y\in\varnothing\)

b) Ta có:

\(3.\left|x-y\right|^5\ge0\)

\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)

\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)

Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)

\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)

8 tháng 3 2017

Đề sai nha pn phải là x^2+y^2=82

a) Ta có: \(\frac{X+2Y}{22}\)=\(\frac{X-2Y}{14}\)

=> 14(x+2y)=22(x-2y)

=>14x+28y=22x-44y

=>72y-8x=0

=>72x=8x

=>9y=x

=>\(\frac{X}{Y}\)=9

Vậy tỉ số \(\frac{X}{Y}\)=9

 b) Mk ko bít làm nhé.

Nhớ K nha

3 tháng 1 2019

Vì \(\left(x-2\right)^{2018}\ge0vs\forall x\) và \(\left(2y-1\right)^{2004}\ge0vs\forall y\)

\(\Rightarrow\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}\ge0\)

Mà \(\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}\le0\)     ( theo bài ra )

Suy ra : \(\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2018}=0\\\left(2y-1\right)^{2004}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)      \(\Rightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Vậy \(x=2;y=\frac{1}{2}\)